160 lines
5.5 KiB
C++
160 lines
5.5 KiB
C++
|
/********************************************************
|
|||
|
* ██████╗ ██████╗████████╗██╗
|
|||
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
|||
|
* ██║ ███╗██║ ██║ ██║
|
|||
|
* ██║ ██║██║ ██║ ██║
|
|||
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
|||
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
|||
|
* Geophysical Computational Tools & Library (GCTL)
|
|||
|
*
|
|||
|
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
|
|||
|
*
|
|||
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
|||
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
|||
|
* License as published by the Free Software Foundation, either version 2
|
|||
|
* of the License, or (at your option) any later version. You should have
|
|||
|
* received a copy of the GNU Lesser General Public License along with this
|
|||
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
|||
|
*
|
|||
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
|||
|
* the GCTL, please consider the option to obtain a commercial license for a
|
|||
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
|||
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
|||
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
|||
|
* to include some description of your company and the realm of its activities.
|
|||
|
* Also add information on how to contact you by electronic and paper mail.
|
|||
|
******************************************************/
|
|||
|
|
|||
|
#include "olayer_binaryentropy.h"
|
|||
|
|
|||
|
gctl::binary_entropy::binary_entropy() {}
|
|||
|
|
|||
|
gctl::binary_entropy::~binary_entropy() {}
|
|||
|
|
|||
|
void gctl::binary_entropy::check_target_data(const matrix<double> &target)
|
|||
|
{
|
|||
|
int nobs = target.col_size();
|
|||
|
int ncls = target.row_size();
|
|||
|
|
|||
|
// Each element should be either 0 or 1
|
|||
|
for (size_t i = 0; i < nobs; i++)
|
|||
|
{
|
|||
|
for (size_t j = 0; j < ncls; j++)
|
|||
|
{
|
|||
|
if (fabs(target[j][i] - 1.0) > 1e-6 && fabs(target[j][i]) > 1e-6)
|
|||
|
{
|
|||
|
throw std::invalid_argument("[gctl::binary_entropy] Target data should only contain zero or one.");
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
void gctl::binary_entropy::check_target_data(const array<int> &target)
|
|||
|
{
|
|||
|
int nobs = target.size();
|
|||
|
for (size_t i = 0; i < nobs; i++)
|
|||
|
{
|
|||
|
if (target[i] != 0 && target[i] != 1)
|
|||
|
{
|
|||
|
throw std::invalid_argument("[gctl::binary_entropy] Target data should only contain zero or one.");
|
|||
|
}
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
void gctl::binary_entropy::evaluation(const matrix<double> &prev_layer_data, const matrix<double> &target)
|
|||
|
{
|
|||
|
int nobs = prev_layer_data.col_size();
|
|||
|
int ncls = prev_layer_data.row_size();
|
|||
|
|
|||
|
if (target.col_size() != nobs || target.row_size() != ncls)
|
|||
|
{
|
|||
|
throw std::invalid_argument("[gctl::binary_entropy] Target data have incorrect dimension.");
|
|||
|
}
|
|||
|
|
|||
|
// Compute the derivative of the input of this layer
|
|||
|
// L = -y * log(phat) - (1 - y) * log(1 - phat)
|
|||
|
// in = phat
|
|||
|
// d(L) / d(in) = -y / phat + (1 - y) / (1 - phat), y is either 0 or 1
|
|||
|
der_in_.resize(ncls, nobs);
|
|||
|
|
|||
|
int i, j;
|
|||
|
#pragma omp parallel for private (i, j) schedule(guided)
|
|||
|
for (i = 0; i < ncls; i++)
|
|||
|
{
|
|||
|
for (j = 0; j < nobs; j++)
|
|||
|
{
|
|||
|
der_in_[i][j] = -1.0*target[i][j]/prev_layer_data[i][j] + (1.0 - target[i][j])/(1.0 - prev_layer_data[i][j]);
|
|||
|
}
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
void gctl::binary_entropy::evaluation(const matrix<double> &prev_layer_data, const array<int> &target)
|
|||
|
{
|
|||
|
// target is a vector of class labels that take values from [0, 1, ..., nclass - 1]
|
|||
|
// The i-th element of target is the class label for observation i
|
|||
|
int nobs = prev_layer_data.col_size();
|
|||
|
int ncls = prev_layer_data.row_size();
|
|||
|
|
|||
|
if (ncls != 1)
|
|||
|
{
|
|||
|
throw std::invalid_argument("[gctl::binary_entropy] Only one response variable is allowed when class labels are used as target data.");
|
|||
|
}
|
|||
|
|
|||
|
if (target.size() != nobs)
|
|||
|
{
|
|||
|
throw std::invalid_argument("[gctl::binary_entropy] Target data have incorrect dimension.");
|
|||
|
}
|
|||
|
|
|||
|
// Compute the derivative of the input of this layer
|
|||
|
// L = -log(phat[y])
|
|||
|
// in = phat
|
|||
|
// d(L) / d(in) = [0, 0, ..., -1/phat[y], 0, ..., 0]
|
|||
|
der_in_.resize(ncls, nobs);
|
|||
|
der_in_.assign_all(0.0);
|
|||
|
|
|||
|
int j;
|
|||
|
#pragma omp parallel for private (j) schedule(guided)
|
|||
|
for (j = 0; j < nobs; j++)
|
|||
|
{
|
|||
|
der_in_[0][j] = -1.0*target[j]/prev_layer_data[0][j] + (1.0 - target[j])/(1.0 - prev_layer_data[0][j]);
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
double gctl::binary_entropy::loss_value() const
|
|||
|
{
|
|||
|
// L = -y * log(phat) - (1 - y) * log(1 - phat)
|
|||
|
// y = 0 => L = -log(1 - phat)
|
|||
|
// y = 1 => L = -log(phat)
|
|||
|
// m_din contains 1/(1 - phat) if y = 0, and -1/phat if y = 1, so
|
|||
|
// L = log(abs(m_din)).sum()
|
|||
|
double res = 0.0;
|
|||
|
|
|||
|
int nobs = der_in_.col_size();
|
|||
|
int ncls = der_in_.row_size();
|
|||
|
|
|||
|
int i, j;
|
|||
|
//#pragma omp parallel for private (i, j) schedule(guided)
|
|||
|
for (i = 0; i < ncls; i++)
|
|||
|
{
|
|||
|
for (j = 0; j < nobs; j++)
|
|||
|
{
|
|||
|
res += std::log(fabs(der_in_[i][j]));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return res/der_in_.col_size();
|
|||
|
}
|
|||
|
|
|||
|
std::string gctl::binary_entropy::get_output_name() const
|
|||
|
{
|
|||
|
return "BinaryClassEntropy";
|
|||
|
}
|
|||
|
|
|||
|
gctl::olayer_type_e gctl::binary_entropy::get_output_type() const
|
|||
|
{
|
|||
|
return BinaryClassEntropy;
|
|||
|
}
|