/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #ifndef _GCTL_DNN_OLAYER_H #define _GCTL_DNN_OLAYER_H #include "gctl/core.h" #include "gctl/algorithms.h" namespace gctl { enum olayer_type_e { RegressionMSE, MultiClassEntropy, BinaryClassEntropy, }; class dnn_olayer { public: dnn_olayer(); virtual ~dnn_olayer(); // The derivative of the input of this layer, which is also the derivative // of the output of previous layer const matrix &backward_propagation_data(); // Check the format of target data, e.g. in classification problems the // target data should be binary (either 0 or 1) virtual void check_target_data(const matrix &target); // Another type of target data where each element is a class label // This version may not be sensible for regression tasks, so by default // we raise an exception virtual void check_target_data(const array &target); // A combination of the forward stage and the back-propagation stage for the output layer // The computed derivative of the input should be stored in this layer, and can be retrieved by // the backward_propagation_data() function virtual void evaluation(const matrix &prev_layer_data, const matrix &target) = 0; // Another type of target data where each element is a class label // This version may not be sensible for regression tasks, so by default // we raise an exception virtual void evaluation(const matrix &prev_layer_data, const array &target); // Return the loss function value after the evaluation // This function can be assumed to be called after evaluate(), so that it can make use of the // intermediate result to save some computation virtual double loss_value() const = 0; // Return the output layer name. It is used to export the NN model. virtual std::string get_output_name() const = 0; // Return the output layer type. It is used to export the NN model. virtual olayer_type_e get_output_type() const = 0; protected: matrix der_in_; // Derivative of the input of this layer // Note that input of this layer is also the output of previous layer }; } #endif // _GCTL_DNN_OLAYER_H