/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "../data/MNIST/mnist_database.h" #include "../lib/dnn.h" using namespace gctl; int main(int argc, char const *argv[]) try { mnist_database data("data/MNIST"); dnn my_nn("Ex-MNIST"); my_nn.load_network("data/saved_networks/mnist_m1.gctl.dnn"); my_nn.show_network(); my_nn.save_layer2text(0, "data/saved_networks/mnist_m1_layer1"); my_nn.save_layer2text(1, "data/saved_networks/mnist_m1_layer2"); /* matrix test_obs(784, 10000), test_lab(10, 10000, 0.0), predicts(10, 10000); const std::vector > &dt_obs2 = data.test_images(); for (size_t i = 0; i < 10000; i++) { for (size_t j = 0; j < 784; j++) { test_obs[j][i] = dt_obs2[i][j]/255.0; } } const std::vector &dt_lab2 = data.test_labels(); for (size_t i = 0; i < 10000; i++) { test_lab[dt_lab2[i]][i] = 1.0; } my_nn.predict(test_obs, predicts); int wrong_predicts = 0; int test_id, pre_id; double test_scr, pre_scr; for (size_t j = 0; j < 10000; j++) { test_id = pre_id = 0; test_scr = pre_scr = 0; for (size_t i = 0; i < 10; i++) { if (test_lab[i][j] > test_scr) {test_scr = test_lab[i][j]; test_id = i;} if (predicts[i][j] > pre_scr) {pre_scr = predicts[i][j]; pre_id = i;} } if (test_id != pre_id) { wrong_predicts++; } } std::cout << "Correct Rate = " << (10000 - wrong_predicts)/100.0 << "%\n"; */ return 0; } catch (std::exception &e) { GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, 0, 0); }