/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see .
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "activation_mish.h"
gctl::mish::mish() {}
gctl::mish::~mish() {}
void gctl::mish::activate(const matrix &z, matrix &a)
{
// Mish(x) = x * tanh(softplus(x))
// softplus(x) = log(1 + exp(x))
// a = activation(z) = Mish(z)
// Z = [z1, ..., zn], A = [a1, ..., an], n observations
// h(x) = tanh(softplus(x)) = (1 + exp(x))^2 - 1
// ------------------
// (1 + exp(x))^2 + 1
// Let s = exp(-abs(x)), t = 1 + s
// If x >= 0, then h(x) = (t^2 - s^2) / (t^2 + s^2)
// If x <= 0, then h(x) = (t^2 - 1) / (t^2 + 1)
a.resize(z.row_size(), z.col_size());
int i, j;
#pragma omp parallel for private (i, j) schedule(guided)
for (i = 0; i < a.row_size(); i++)
{
for (j = 0; j < a.col_size(); j++)
{
a[i][j] = z[i][j]*std::tanh(log(1.0 + exp(z[i][j])));
}
}
return;
}
void gctl::mish::apply_jacobian(const matrix &z,
const matrix &a, const matrix &f, matrix &g)
{
// Apply the Jacobian matrix J to a vector f
// J = d_a / d_z = diag(Mish'(z))
// g = J * f = Mish'(z) .* f
// Z = [z1, ..., zn], G = [g1, ..., gn], F = [f1, ..., fn]
// Note: When entering this function, Z and G may point to the same matrix
// Let h(x) = tanh(softplus(x))
// Mish'(x) = h(x) + x * h'(x)
// h'(x) = tanh'(softplus(x)) * softplus'(x)
// = [1 - h(x)^2] * exp(x) / (1 + exp(x))
// = [1 - h(x)^2] / (1 + exp(-x))
// Mish'(x) = h(x) + [x - Mish(x) * h(x)] / (1 + exp(-x))
// A = Mish(Z) = Z .* h(Z) => h(Z) = A ./ Z, h(0) = 0.6
g.resize(a.row_size(), a.col_size());
int i, j;
#pragma omp parallel for private (i, j) schedule(guided)
for (i = 0; i < g.row_size(); i++)
{
for (j = 0; j < g.col_size(); j++)
{
g[i][j] = std::tanh(log(1.0 + exp(z[i][j])));
}
for (j = 0; j < g.col_size(); j++)
{
g[i][j] = f[i][j]*(g[i][j] + (z[i][j] - a[i][j]*g[i][j])/(1.0 + exp(-1.0*z[i][j])));
}
}
return;
}
std::string gctl::mish::activation_name() const
{
return "Mish";
}
gctl::activation_type_e gctl::mish::activation_type() const
{
return Mish;
}