/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #ifndef _GCTL_DNN_HLAYER_H #define _GCTL_DNN_HLAYER_H #include "activation_identity.h" #include "activation_mish.h" #include "activation_relu.h" #include "activation_prelu.h" #include "activation_sigmoid.h" #include "activation_softmax.h" #include "activation_tanh.h" namespace gctl { enum hlayer_type_e { FullyConnected, MaxPooling, AvgPooling, Convolution, }; enum pad_type_e { Valid, Same, }; class dnn_hlayer { public: dnn_hlayer(); virtual ~dnn_hlayer(); int in_size() const; int out_size() const; int obs_size() const; const matrix &forward_propagation_data(); const matrix &backward_propagation_data(); const matrix &get_linear_term(); const matrix &get_linear_gradient(); activation_type_e get_activation_type() const; std::string get_activation_name() const; virtual void forward_propagation(const array &all_weights, const matrix &prev_layer_data) = 0; virtual void backward_propagation(const array &all_weights, const array &all_ders, const matrix &prev_layer_data, const matrix &next_layer_data) = 0; virtual hlayer_type_e get_layer_type() const = 0; virtual std::string get_layer_name() const = 0; virtual std::string layer_info() const = 0; virtual void save_layer_setup(std::ofstream &os) const = 0; virtual void load_layer_setup(std::ifstream &is) = 0; virtual void save_weights2text(const array &all_weights, std::ofstream &os) const = 0; protected: void cal_valid_padding_idx(array &idx, int i, int j, int i_rows, int i_cols, int p_rows, int p_cols, int s_rows, int s_cols); void cal_same_padding_idx(array &idx, int i, int j, int i_rows, int i_cols, int p_rows, int p_cols, int s_rows, int s_cols, int u_pad, int l_pad); protected: dnn_activation *activator_; // activation object int w_is_, w_outs_; // weight start index, weight input size, weight output size int o_is_; // observation input size matrix z_; // Linear term, z = W' * in + b matrix a_; // Output of this layer, a_ = act(z) matrix der_in_; // Derivative of the input of this layer, which is also the output of previous layer matrix der_z_; // Derivative of the linear term }; } #endif // _GCTL_DNN_HLAYER_H