/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "hlayer_avgpooling.h" gctl::avgpooling::avgpooling(){} gctl::avgpooling::avgpooling(int in_rows, int in_cols, int pool_rows, int pool_cols, int stride_rows, int stride_cols, pad_type_e pl_type, activation_type_e acti_type) { init_avgpooling(in_rows, in_cols, pool_rows, pool_cols, stride_rows, stride_cols, pl_type, acti_type); } gctl::avgpooling::~avgpooling(){} void gctl::avgpooling::init_avgpooling(int in_rows, int in_cols, int pool_rows, int pool_cols, int stride_rows, int stride_cols, pad_type_e pl_type, activation_type_e acti_type) { i_rows_ = in_rows; i_cols_ = in_cols; p_rows_ = pool_rows; p_cols_ = pool_cols; s_rows_ = stride_rows; s_cols_ = stride_cols; p_type_ = pl_type; if (acti_type == Identity) activator_ = new identity; else if (acti_type == Mish) activator_ = new mish; else if (acti_type == ReLU) activator_ = new relu; else if (acti_type == PReLU) activator_ = new prelu; else if (acti_type == Sigmoid) activator_ = new sigmoid; else if (acti_type == SoftMax) activator_ = new softmax; else if (acti_type == Tanh) activator_ = new tanh; else throw std::invalid_argument("[gctl::avgpooling] Invalid activation type."); // 计算输出大小 o_rows_ = (in_rows + s_rows_ - p_rows_)/s_rows_; o_cols_ = (in_cols + s_cols_ - p_cols_)/s_cols_; if (pl_type == Same && (in_rows + s_rows_ - p_rows_)%s_rows_ != 0) { o_rows_++; u_pad_ = ((in_rows + s_rows_ - p_rows_)%s_rows_)/2; } else u_pad_ = 0; if (pl_type == Same && (in_cols + s_cols_ - p_cols_)%s_cols_ != 0) { o_cols_++; l_pad_ = ((in_cols + s_cols_ - p_cols_)%s_cols_)/2; } else l_pad_ = 0; w_is_ = i_rows_*i_cols_; w_outs_ = o_rows_*o_cols_; p_idx_.resize(p_rows_*p_cols_); return; } void gctl::avgpooling::forward_propagation(const array &all_weights, const matrix &prev_layer_data) { // z_: out_size x nobs // a_: out_size x nobs o_is_ = prev_layer_data.col_size(); // Forward linear terms z_.resize(w_outs_, o_is_); a_.resize(w_outs_, o_is_); double p_val; for (size_t i = 0; i < o_rows_; i++) { for (size_t j = 0; j < o_cols_; j++) { if (p_type_ == Valid) cal_valid_padding_idx(p_idx_, i, j, i_rows_, i_cols_, p_rows_, p_cols_, s_rows_, s_cols_); if (p_type_ == Same) cal_same_padding_idx(p_idx_, i, j, i_rows_, i_cols_, p_rows_, p_cols_, s_rows_, s_cols_, u_pad_, l_pad_); for (size_t o = 0; o < o_is_; o++) { p_val = 0.0; for (size_t p = 0; p < p_idx_.size(); p++) { if (p_idx_[p] != -1) p_val += prev_layer_data[p_idx_[p]][o]; } z_[i*o_cols_ + j][o] = p_val/p_idx_.size(); } } } // Apply activation function activator_->activate(z_, a_); return; } void gctl::avgpooling::backward_propagation(const array &all_weights, const array &all_ders, const matrix &prev_layer_data, const matrix &next_layer_data) { der_z_.resize(w_outs_, o_is_); der_in_.resize(w_is_, o_is_, 0.0); // prev_layer_data: in_size x nobs // next_layer_data: out_size x nobs // After forward stage, m_z contains z = max_avgpooling(in) // Now we need to calculate d(L) / d(z) = [d(a) / d(z)] * [d(L) / d(a)] // d(L) / d(z) is computed in the next layer, contained in next_layer_data // The Jacobian matrix J = d(a) / d(z) is determined by the activation function // der_z_: out_size x nobs activator_->apply_jacobian(z_, a_, next_layer_data, der_z_); for (size_t j = 0; j < o_is_; j++) { for (size_t r = 0; r < o_rows_; r++) { for (size_t c = 0; c < o_cols_; c++) { if (p_type_ == Valid) cal_valid_padding_idx(p_idx_, r, c, i_rows_, i_cols_, p_rows_, p_cols_, s_rows_, s_cols_); if (p_type_ == Same) cal_same_padding_idx(p_idx_, r, c, i_rows_, i_cols_, p_rows_, p_cols_, s_rows_, s_cols_, u_pad_, l_pad_); for (size_t p = 0; p < p_rows_*p_cols_; p++) { if (p_idx_[p] != -1) der_in_[p_idx_[p]][j] += der_z_[r*o_cols_ + c][j]/(p_rows_*p_cols_); } } } } return; } gctl::hlayer_type_e gctl::avgpooling::get_layer_type() const { return AvgPooling; } std::string gctl::avgpooling::get_layer_name() const { return "AvgPooling"; } std::string gctl::avgpooling::layer_info() const { std::string info = std::to_string(w_is_) + "x" + std::to_string(w_outs_) + " (" + std::to_string(i_rows_) + "," + std::to_string(i_cols_) + ")x" + "(" + std::to_string(o_rows_) + "," + std::to_string(o_cols_) + "), " + std::to_string(p_rows_) + "x" + std::to_string(p_cols_) + ", " + std::to_string(s_rows_) + "x" + std::to_string(s_cols_) + ", AvgPooling "; if (p_type_ == Same) info += "(Same), "; if (p_type_ == Valid) info += "(Valid), "; info += activator_->activation_name(); return info; } void gctl::avgpooling::save_layer_setup(std::ofstream &os) const { hlayer_type_e h_type = get_layer_type(); activation_type_e a_type = get_activation_type(); os.write((char*)&i_rows_, sizeof(int)); os.write((char*)&i_cols_, sizeof(int)); os.write((char*)&p_rows_, sizeof(int)); os.write((char*)&p_cols_, sizeof(int)); os.write((char*)&s_rows_, sizeof(int)); os.write((char*)&s_cols_, sizeof(int)); os.write((char*)&h_type, sizeof(hlayer_type_e)); os.write((char*)&p_type_, sizeof(pad_type_e)); os.write((char*)&a_type, sizeof(activation_type_e)); return; } void gctl::avgpooling::load_layer_setup(std::ifstream &is) { int in_rows, in_cols, pool_rows, pool_cols, stride_rows, stride_cols; hlayer_type_e h_type; pad_type_e p_type; activation_type_e a_type; is.read((char*)&in_rows, sizeof(int)); is.read((char*)&in_cols, sizeof(int)); is.read((char*)&pool_rows, sizeof(int)); is.read((char*)&pool_cols, sizeof(int)); is.read((char*)&stride_rows, sizeof(int)); is.read((char*)&stride_cols, sizeof(int)); is.read((char*)&h_type, sizeof(hlayer_type_e)); is.read((char*)&p_type, sizeof(pad_type_e)); is.read((char*)&a_type, sizeof(activation_type_e)); if (h_type != AvgPooling) { throw std::invalid_argument("[gctl::avgpooling] Invalid hind layer type."); } init_avgpooling(in_rows, in_cols, pool_rows, pool_cols, stride_rows, stride_cols, p_type, a_type); return; } void gctl::avgpooling::save_weights2text(const array &all_weights, std::ofstream &os) const { return; }