/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "hlayer_fully_connected.h" gctl::fully_connected::fully_connected(){} gctl::fully_connected::fully_connected(int p_st, int p_ins, int p_outs, activation_type_e acti_type) { init_fully_connected(p_st, p_ins, p_outs, acti_type); } gctl::fully_connected::~fully_connected(){} void gctl::fully_connected::init_fully_connected(int p_st, int p_ins, int p_outs, activation_type_e acti_type) { w_st_ = p_st; w_is_ = p_ins; w_outs_ = p_outs; b_st_ = p_st + p_ins*p_outs; if (acti_type == Identity) activator_ = new identity; else if (acti_type == Mish) activator_ = new mish; else if (acti_type == ReLU) activator_ = new relu; else if (acti_type == PReLU) activator_ = new prelu; else if (acti_type == Sigmoid) activator_ = new sigmoid; else if (acti_type == SoftMax) activator_ = new softmax; else if (acti_type == Tanh) activator_ = new tanh; else throw std::invalid_argument("[gctl::fully_connected] Invalid activation type."); return; } void gctl::fully_connected::forward_propagation(const array &all_weights, const matrix &prev_layer_data) { // z_: out_size x nobs // a_: out_size x nobs o_is_ = prev_layer_data.col_size(); // Forward linear terms z_.resize(w_outs_, o_is_); a_.resize(w_outs_, o_is_); // Linear term z = W^T * in + b int i, j, k; #pragma omp parallel for private (i, j, k) schedule(guided) for (i = 0; i < w_outs_; i++) { for (j = 0; j < o_is_; j++) { z_[i][j] = 0.0; for (k = 0; k < w_is_; k++) { z_[i][j] += all_weights[w_st_ + i + k*w_outs_]*prev_layer_data[k][j]; } } } //#pragma omp parallel for private (i, j) schedule(guided) for (j = 0; j < o_is_; j++) { for (i = 0; i < w_outs_; i++) { z_[i][j] += all_weights[b_st_ + i]; } } // Apply activation function activator_->activate(z_, a_); /* for (j = 0; j < o_is_; j++) { for (i = 0; i < w_outs_; i++) { std::cout << a_[i][j] << "\n"; } } std::cout << "done\n"; */ return; } void gctl::fully_connected::backward_propagation(const array &all_weights, const array &all_ders, const matrix &prev_layer_data, const matrix &next_layer_data) { der_z_.resize(w_outs_, o_is_); der_in_.resize(w_is_, o_is_); // prev_layer_data: in_size x nobs // next_layer_data: out_size x nobs // After forward stage, m_z contains z = W' * in + b // Now we need to calculate d(L) / d(z) = [d(a) / d(z)] * [d(L) / d(a)] // d(L) / d(a) is computed in the next layer, contained in next_layer_data // The Jacobian matrix J = d(a) / d(z) is determined by the activation function // der_z_: out_size x nobs activator_->apply_jacobian(z_, a_, next_layer_data, der_z_); // Now dLz contains d(L) / d(z) // Derivative for weights, d(L) / d(W) = [d(L) / d(z)] * in' int i, j, k; #pragma omp parallel for private (i, j, k) schedule(guided) for (i = 0; i < w_is_; i++) { for (j = 0; j < w_outs_; j++) { all_ders[w_st_ + i*w_outs_ + j] = 0; for (k = 0; k < o_is_; k++) { all_ders[w_st_ + i*w_outs_ + j] += prev_layer_data[i][k]*der_z_[j][k]; } all_ders[w_st_ + i*w_outs_ + j] /= o_is_; } } // Derivative for bias, d(L) / d(b) = d(L) / d(z) #pragma omp parallel for private (i, j) schedule(guided) for (i = 0; i < w_outs_; i++) { all_ders[b_st_ + i] = 0.0; for (j = 0; j < o_is_; j++) { all_ders[b_st_ + i] += der_z_[i][j]; } all_ders[b_st_ + i] /= o_is_; } // Compute d(L) / d_in = W * [d(L) / d(z)] // der_in_: in_size x nobs #pragma omp parallel for private (i, j, k) schedule(guided) for (i = 0; i < w_is_; i++) { for (j = 0; j < o_is_; j++) { der_in_[i][j] = 0.0; for (k = 0; k < w_outs_; k++) { der_in_[i][j] += all_weights[w_st_ + i*w_outs_ + k]*der_z_[k][j]; } } } return; } gctl::hlayer_type_e gctl::fully_connected::get_layer_type() const { return FullyConnected; } std::string gctl::fully_connected::get_layer_name() const { return "FullyConnected"; } std::string gctl::fully_connected::layer_info() const { std::string info = std::to_string(w_is_) + "x" + std::to_string(w_outs_) + ", FullyConnected, " + activator_->activation_name(); return info; } void gctl::fully_connected::save_layer_setup(std::ofstream &os) const { hlayer_type_e l_type = get_layer_type(); activation_type_e a_type = get_activation_type(); os.write((char*)&w_st_, sizeof(int)); os.write((char*)&w_is_, sizeof(int)); os.write((char*)&w_outs_, sizeof(int)); os.write((char*)&l_type, sizeof(hlayer_type_e)); os.write((char*)&a_type, sizeof(activation_type_e)); return; } void gctl::fully_connected::load_layer_setup(std::ifstream &is) { int st, iss, outs; hlayer_type_e l_type; activation_type_e a_type; is.read((char*)&st, sizeof(int)); is.read((char*)&iss, sizeof(int)); is.read((char*)&outs, sizeof(int)); is.read((char*)&l_type, sizeof(hlayer_type_e)); is.read((char*)&a_type, sizeof(activation_type_e)); init_fully_connected(st, iss, outs, a_type); return; } void gctl::fully_connected::save_weights2text(const array &all_weights, std::ofstream &os) const { for (int i = 0; i < w_outs_; i++) { for (int k = 0; k < w_is_; k++) { os << k << " " << i << " " << all_weights[w_st_ + i + k*w_outs_] << "\n"; } } return; }