/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "olayer_rmse.h" gctl::rmse::rmse() {} gctl::rmse::~rmse() {} void gctl::rmse::evaluation(const matrix &prev_layer_data, const matrix &target) { int nobs = prev_layer_data.col_size(); int nvar = prev_layer_data.row_size(); if (target.col_size() != nobs || target.row_size() != nvar) { throw std::invalid_argument("[gctl::rmse] Target data have incorrect dimension."); } // Compute the derivative of the input of this layer // L = 0.5 * ||yhat - y||^2 // in = yhat // d(L) / d(in) = yhat - y der_in_.resize(nvar, nobs); int i, j; #pragma omp parallel for private (i, j) schedule(guided) for (i = 0; i < nvar; i++) { for (j = 0; j < nobs; j++) { der_in_[i][j] = prev_layer_data[i][j] - target[i][j]; } } return; } double gctl::rmse::loss_value() const { // L = 0.5 * ||yhat - y||^2 double n = der_in_.norm(L2); return 0.5*power2(n)/der_in_.col_size(); } std::string gctl::rmse::get_output_name() const { return "RegressionMSE"; } gctl::olayer_type_e gctl::rmse::get_output_type() const { return RegressionMSE; }