89 lines
4.0 KiB
C++
89 lines
4.0 KiB
C++
/********************************************************
|
|
* ██████╗ ██████╗████████╗██╗
|
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
|
* ██║ ███╗██║ ██║ ██║
|
|
* ██║ ██║██║ ██║ ██║
|
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
|
* Geophysical Computational Tools & Library (GCTL)
|
|
*
|
|
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
|
|
*
|
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, either version 2
|
|
* of the License, or (at your option) any later version. You should have
|
|
* received a copy of the GNU Lesser General Public License along with this
|
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
|
* the GCTL, please consider the option to obtain a commercial license for a
|
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
|
* to include some description of your company and the realm of its activities.
|
|
* Also add information on how to contact you by electronic and paper mail.
|
|
******************************************************/
|
|
|
|
#ifndef _GCTL_DNN_OLAYER_H
|
|
#define _GCTL_DNN_OLAYER_H
|
|
|
|
#include "gctl/core.h"
|
|
#include "gctl/algorithm.h"
|
|
|
|
namespace gctl
|
|
{
|
|
enum olayer_type_e
|
|
{
|
|
RegressionMSE,
|
|
MultiClassEntropy,
|
|
BinaryClassEntropy,
|
|
};
|
|
|
|
class dnn_olayer
|
|
{
|
|
public:
|
|
dnn_olayer();
|
|
virtual ~dnn_olayer();
|
|
|
|
// The derivative of the input of this layer, which is also the derivative
|
|
// of the output of previous layer
|
|
const matrix<double> &backward_propagation_data();
|
|
|
|
// Check the format of target data, e.g. in classification problems the
|
|
// target data should be binary (either 0 or 1)
|
|
virtual void check_target_data(const matrix<double> &target);
|
|
|
|
// Another type of target data where each element is a class label
|
|
// This version may not be sensible for regression tasks, so by default
|
|
// we raise an exception
|
|
virtual void check_target_data(const array<int> &target);
|
|
|
|
// A combination of the forward stage and the back-propagation stage for the output layer
|
|
// The computed derivative of the input should be stored in this layer, and can be retrieved by
|
|
// the backward_propagation_data() function
|
|
virtual void evaluation(const matrix<double> &prev_layer_data, const matrix<double> &target) = 0;
|
|
|
|
// Another type of target data where each element is a class label
|
|
// This version may not be sensible for regression tasks, so by default
|
|
// we raise an exception
|
|
virtual void evaluation(const matrix<double> &prev_layer_data, const array<int> &target);
|
|
|
|
// Return the loss function value after the evaluation
|
|
// This function can be assumed to be called after evaluate(), so that it can make use of the
|
|
// intermediate result to save some computation
|
|
virtual double loss_value() const = 0;
|
|
|
|
// Return the output layer name. It is used to export the NN model.
|
|
virtual std::string get_output_name() const = 0;
|
|
|
|
// Return the output layer type. It is used to export the NN model.
|
|
virtual olayer_type_e get_output_type() const = 0;
|
|
|
|
protected:
|
|
matrix<double> der_in_; // Derivative of the input of this layer
|
|
// Note that input of this layer is also the output of previous layer
|
|
};
|
|
}
|
|
|
|
#endif // _GCTL_DNN_OLAYER_H
|