gctl_mesh/tool/gridmanager/gridmanager.cpp

824 lines
25 KiB
C++
Raw Normal View History

2024-09-10 20:02:00 +08:00
/********************************************************
*
*
*
*
*
*
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "gridmanager.h"
// We use the editline library to handle all inputs
#include "editline.h"
cmd_pair curr_cmd; // Executing command
gctl::regular_grid rg; // Grid object
extern "C" {
/*
* Strip whitespace from the start and end of STRING. Return a pointer
* into STRING.
*/
char *stripwhite(char *string)
{
char *s, *t;
for (s = string; isspace(*s); s++) ;
if (*s == 0)
return s;
t = s + strlen(s) - 1;
while (t > s && isspace(*t))
t--;
*++t = '\0';
return s;
}
/* Generator function for command completion. STATE lets us
know whether to start from scratch; without any state
(i.e. STATE == 0), then we start at the top of the list. */
char *command_generator(const char *text, int state)
{
static int list_index, len;
/* If this is a new word to complete, initialize now. This
includes saving the length of TEXT for efficiency, and
initializing the index variable to 0. */
if (!state)
{
list_index = 0;
len = strlen(text);
}
/* Return the next name which partially matches from the command list. */
while (list_index < CMD_NUM)
{
if (std::string(text) == commands[list_index].name.substr(0, len))
{
//const char* name = commands[list_index].name.data();
return strdup(commands[list_index].name.data());
}
else list_index++;
}
/* If no names matched, then return NULL. */
return nullptr;
}
/*
* Attempt to complete on the contents of TEXT. START and END
* bound the region of rl_line_buffer that contains the word to
* complete. TEXT is the word to complete. We can use the entire
* contents of rl_line_buffer in case we want to do some simple
* parsing. Return the array of matches, or NULL if there aren't any.
*/
char **gridmanager_completion(const char *text, int start, int end)
{
char **matches = nullptr;
/* If this word is at the start of the line, then it is a command
to complete. Otherwise it is the name of a file in the current
directory. */
if (start == 0) matches = rl_completion_matches(text, command_generator);
return matches;
}
void initialize_readline(void)
{
/* Allow conditional parsing of the ~/.inputrc file. */
rl_readline_name = "gridmanager";
/* Tell the completer that we want a crack first. */
rl_attempted_completion_function = gridmanager_completion;
}
} // End C section
void display_cmds()
{
std::clog << "Command:\n";
for (size_t i = 0; i < CMD_NUM - 1; i++)
{
std::clog << std::setw(12) << commands[i].name << ":\t" << commands[i].brief << "\n";
}
std::clog << "\nEnter \"<command>?\" to see detailed instructions.\n\n";
std::clog << "Keywords:\n";
for (size_t i = 0; i < KEY_NUM; i++)
{
std::clog << std::setw(12) << keywords[i].name << ":\t" << keywords[i].brief << "\n";
}
return;
}
void display_help(std::string input_cmd)
{
std::string install_dir = GCTL_MESH_INSTALL_PREFIX;
std::ifstream helpin;
open_infile(helpin, install_dir + "/sbin/share/readme_gridmanager", ".md");
std::string tmp_l, tmp_help;
std::vector<std::string> cmds;
std::vector<std::string> helps;
while (getline(helpin, tmp_l))
{
if (tmp_l.substr(0, 4) == "####")
{
cmds.push_back(tmp_l.substr(5));
tmp_help = "";
while (getline(helpin, tmp_l))
{
if (tmp_l == "") break;
else tmp_help += tmp_l + "\n";
}
helps.push_back(tmp_help);
}
}
helpin.close();
std::string cmd_str;
for (size_t j = 0; j < cmds.size(); j++)
{
parse_string_to_value(cmds[j], ' ', true, cmd_str);
if (input_cmd == cmd_str)
{
replace_all(tmp_l, cmds[j], "\\", "");
std::cout << GCTL_BOLDGREEN << tmp_l << GCTL_RESET << "\n";
std::cout << helps[j] << "\n";
break;
}
}
return;
}
void exec_cmd(std::string cmd)
{
std::string cmd_name;
parse_string_to_value(cmd, ' ', true, cmd_name);
// show instruction if there is a question mark at end of the command
if (cmd_name.back() == '?')
{
cmd_name = cmd_name.substr(0, cmd_name.length() - 1);
display_help(cmd_name);
return;
}
// set default command to null
curr_cmd = commands[CMD_NUM - 1];
for (size_t i = 0; i < CMD_NUM - 1; i++)
{
if (cmd_name == commands[i].name)
{
curr_cmd = commands[i]; break;
}
}
if (curr_cmd.func_p == nullptr) throw gctl::runtime_error("Invalid command: " + cmd_name);
std::vector<std::string> cmd_units;
parse_string_with_quotes(cmd, cmd_units);
return curr_cmd.func_p(cmd_units);
}
// This function is defined to avoid potential breakdown while running in script mode.
void quit(const std::vector<std::string> &cmd_units)
{
return;
}
void mesh_info(const std::vector<std::string> &cmd_units)
{
// info [\<new-grid-name\>] [\<new-info\>]
if (cmd_units.size() == 1)
{
rg.show_info();
return;
}
gctl::array<std::string> copy_str(2, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 2); i++)
{
copy_str[i - 1] = cmd_units[i];
}
if (copy_str[0] != "null") rg.set_meshname(copy_str[0]);
if (copy_str[1] != "null") rg.set_meshinfo(copy_str[1]);
return;
}
#ifdef GCTL_MESH_EXPRTK
inline double expr2double(std::string s)
{
exprtk::symbol_table<double> sym_tab;
exprtk::expression<double> expr;
exprtk::parser<double> p;
sym_tab.add_constants();
expr.register_symbol_table(sym_tab);
p.compile(s, expr);
return expr.value();
}
#endif // GCTL_MESH_EXPRTK
void new_grid(const std::vector<std::string> &cmd_units)
{
// new \<new-file\> \<xnum\> \<ynum\> \<xmin\> \<ymin\> \<dx\> \<dy\> [\<info\>]
if (cmd_units.size() < 8) throw std::runtime_error("new-grid: insufficient parameters.");
gctl::array<std::string> copy_str(8, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 8); i++)
{
copy_str[i - 1] = cmd_units[i];
}
if (rg.initiated()) rg.clear_regular_grid();
double xmin, ymin, dx, dy;
#ifdef GCTL_MESH_EXPRTK
xmin = expr2double(copy_str[3]);
ymin = expr2double(copy_str[4]);
dx = expr2double(copy_str[5]);
dy = expr2double(copy_str[6]);
#else
xmin = atof(copy_str[3].c_str());
ymin = atof(copy_str[4].c_str());
dx = atof(copy_str[5].c_str());
dy = atof(copy_str[6].c_str());
#endif // GCTL_MESH_EXPRTK
rg.init(copy_str[0], copy_str[7], atoi(copy_str[1].c_str()),
atoi(copy_str[2].c_str()), xmin, ymin, dx, dy);
return;
}
void open_grid(const std::vector<std::string> &cmd_units)
{
// open binary <file>
// open netcdf <file> [<x-name> <y-name>] [<data-name>] [node|cell]
// open surfer <file> <new-data-name> [surfer6-text|surfer6-binary|surfer7] [node|cell]
if (cmd_units.size() < 3) throw std::runtime_error("open: insufficient parameters.");
if (cmd_units[1] == "binary") open_binary(cmd_units);
else if (cmd_units[1] == "netcdf") open_netcdf(cmd_units);
else if (cmd_units[1] == "surfer") open_surfer(cmd_units);
else throw std::runtime_error("open: unknown file format.");
return;
}
void save_grid(const std::vector<std::string> &cmd_units)
{
// save binary <file>
// save netcdf <file> [<data-name>|node|cell]
// save surfer <file> <data-name> [surfer6-text|surfer6-binary|surfer7]
// save gmsh <file>
// save text <file> <data-name> [<data-name>]...
if (cmd_units.size() < 3) throw std::runtime_error("save: insufficient parameters.");
if (cmd_units[1] == "binary") save_binary(cmd_units);
else if (cmd_units[1] == "netcdf") save_netcdf(cmd_units);
else if (cmd_units[1] == "surfer") save_surfer(cmd_units);
else if (cmd_units[1] == "gmsh") save_gmsh(cmd_units);
else if (cmd_units[1] == "text") save_text(cmd_units);
else throw std::runtime_error("save: unknown file format.");
return;
}
void open_binary(const std::vector<std::string> &cmd_units)
{
// open binary <file>
rg.load_binary(cmd_units[2]);
return;
}
void save_binary(const std::vector<std::string> &cmd_units)
{
// save binary <file>
rg.save_binary(cmd_units[2]);
return;
}
void open_netcdf(const std::vector<std::string> &cmd_units)
{
// open netcdf <file> [<x-name> <y-name>] [<data-name>] [node|cell]
if (cmd_units.size() < 3) throw std::runtime_error("open: insufficient parameters.");
gctl::array<std::string> copy_str(5, "null");
for (size_t i = 0; i < GCTL_MIN(cmd_units.size() - 2, 5); i++)
{
copy_str[i] = cmd_units[i + 2];
}
mesh_data_type_e d_type = NodeData;
if (copy_str[4] == "cell") d_type = ElemData;
else if (copy_str[4] == "node") d_type = NodeData;
if (copy_str[1] == "null") copy_str[1] = "x";
if (copy_str[2] == "null") copy_str[2] = "y";
if (copy_str[3] == "null") rg.load_netcdf_grid(copy_str[0], d_type, copy_str[1], copy_str[2]);
else rg.load_netcdf_grid(copy_str[0], d_type, copy_str[1], copy_str[2], copy_str[3]);
return;
}
void save_netcdf(const std::vector<std::string> &cmd_units)
{
2024-10-07 21:09:58 +08:00
// save netcdf <file> [<data-name>|node|cell] [xname] [yname]
2024-09-10 20:02:00 +08:00
if (cmd_units.size() < 3) throw std::runtime_error("save: insufficient parameters.");
2024-10-07 21:09:58 +08:00
gctl::array<std::string> copy_str(4, "null");
for (size_t i = 0; i < GCTL_MIN(cmd_units.size() - 2, 4); i++)
2024-09-10 20:02:00 +08:00
{
copy_str[i] = cmd_units[i + 2];
}
2024-10-07 21:09:58 +08:00
std::string xname = "x", yname = "y";
if (copy_str[2] != "null") xname = copy_str[2];
if (copy_str[3] != "null") yname = copy_str[3];
if (copy_str[1] == "null") rg.save_netcdf_grid(copy_str[0], NodeData, xname, yname);
2024-10-07 21:15:08 +08:00
else if (copy_str[1] == "node") rg.save_netcdf_grid(copy_str[0], NodeData, xname, yname);
2024-10-07 21:09:58 +08:00
else if (copy_str[1] == "cell") rg.save_netcdf_grid(copy_str[0], ElemData, xname, yname);
else rg.save_netcdf_grid(copy_str[0], copy_str[1], xname, yname);
2024-09-10 20:02:00 +08:00
return;
}
void save_gmsh(const std::vector<std::string> &cmd_units)
{
// save gmsh <file>
if (cmd_units.size() < 3) throw std::runtime_error("save: insufficient parameters.");
2025-01-12 23:39:36 +08:00
rg.save_gmsh(cmd_units[2], OverWrite, NotPacked);
2024-09-10 20:02:00 +08:00
return;
}
void open_surfer(const std::vector<std::string> &cmd_units)
{
// open surfer <file> [<new-data-name>] [surfer6-text|surfer6-binary|surfer7] [node|cell]
if (cmd_units.size() < 4) throw std::runtime_error("open: insufficient parameters.");
gctl::array<std::string> copy_str(4, "null");
for (size_t i = 0; i < GCTL_MIN(cmd_units.size() - 2, 4); i++)
{
copy_str[i] = cmd_units[i + 2];
}
surfer_file_type_e st = Surfer6Text;
if (copy_str[2] == "surfer6-text") st = Surfer6Text;
else if (copy_str[2] == "surfer6-binary") st = Surfer6Binary;
else if (copy_str[2] == "surfer7") st = Surfer7Grid;
mesh_data_type_e d_type = NodeData;
if (copy_str[3] == "node") d_type = NodeData;
else if (copy_str[3] == "cell") d_type = ElemData;
if (copy_str[1] == "null") rg.load_surfer_grid(copy_str[0], "Untitled", d_type, st);
else rg.load_surfer_grid(copy_str[0], copy_str[3], d_type, st);
return;
}
void save_surfer(const std::vector<std::string> &cmd_units)
{
// save surfer <file> <data-name> [surfer6-text|surfer6-binary|surfer7]
if (cmd_units.size() < 4) throw std::runtime_error("save: insufficient parameters.");
gctl::array<std::string> copy_str(3, "null");
for (size_t i = 0; i < GCTL_MIN(cmd_units.size() - 2, 3); i++)
{
copy_str[i] = cmd_units[i + 2];
}
surfer_file_type_e st = Surfer6Text;
if (copy_str[2] == "surfer6-text") st = Surfer6Text;
else if (copy_str[2] == "surfer6-binary") st = Surfer6Binary;
else if (copy_str[2] == "surfer7") st = Surfer7Grid;
rg.save_surfer_grid(copy_str[0], copy_str[1] ,st);
return;
}
void save_text(const std::vector<std::string> &cmd_units)
{
// save text <file> <data-name>
if (cmd_units.size() < 4) throw std::runtime_error("save: insufficient parameters.");
gctl::array<std::string> copy_str(cmd_units.size() - 3, "null");
for (size_t i = 0; i < cmd_units.size() - 3; i++)
{
copy_str[i] = cmd_units[i + 3];
}
rg.save_text(cmd_units[2], copy_str);
return;
}
void data_cloud(const std::vector<std::string> &cmd_units)
{
// data-cloud \<new-data-name\> node|cell \<data-could-file\> \<search-x\> \<search-y\> \<search-deg\> [\<text_descriptor\>]
if (cmd_units.size() < 7) throw std::runtime_error("data-cloud: insufficient parameters.");
gctl::array<std::string> copy_str(7, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 7); i++)
{
copy_str[i - 1] = cmd_units[i];
}
mesh_data_type_e d_type = NodeData;
if (copy_str[1] == "node") d_type = NodeData;
else if (copy_str[1] == "cell") d_type = ElemData;
else throw std::runtime_error("open-surfer: invalid grid data type.");
2024-10-07 21:09:58 +08:00
text_descriptor desc;
desc.file_name_ = copy_str[2];
desc.file_ext_ = ".txt";
desc.col_str_ = "0,1,2";
desc.delimiter_ = ' ';
desc.att_sym_ = '#';
desc.head_num_ = 0;
2024-09-10 20:02:00 +08:00
if (copy_str[6] != "null")
{
2024-10-07 21:09:58 +08:00
parse_string_to_value(copy_str[6], '/', true, desc.col_str_,
desc.delimiter_, desc.att_sym_, desc.head_num_);
2024-09-10 20:02:00 +08:00
}
std::vector<double> posix_vec, posiy_vec, data_vec;
2024-10-07 21:09:58 +08:00
read_text2vectors(desc, posix_vec, posiy_vec, data_vec);
2024-09-10 20:02:00 +08:00
array<point2dc> posi_arr(posix_vec.size());
array<double> posi_val;
2025-01-12 23:39:36 +08:00
posi_val.input(data_vec);
2024-09-10 20:02:00 +08:00
for (size_t i = 0; i < posi_arr.size(); i++)
{
posi_arr[i].x = posix_vec[i];
posi_arr[i].y = posiy_vec[i];
}
rg.load_data_cloud(posi_arr, posi_val, atof(copy_str[3].c_str()), atof(copy_str[4].c_str()), atof(copy_str[5].c_str()), copy_str[0], d_type);
return;
}
void gradient(const std::vector<std::string> &cmd_units)
{
// gradient <data-name> <new-data-name> dx|dy <order>
if (cmd_units.size() < 4) throw std::runtime_error("gradient: insufficient parameters.");
gctl::array<std::string> copy_str(4, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 4); i++)
{
copy_str[i - 1] = cmd_units[i];
}
gradient_type_e g_type;
if (copy_str[2] == "dx") g_type = Dx;
else if (copy_str[2] == "dy") g_type = Dy;
else throw std::runtime_error("gradient: invalid gradient type.");
int order = 1;
if (copy_str[3] != "null") order = atoi(copy_str[3].c_str());
rg.gradient(copy_str[0], copy_str[1], g_type, order);
return;
}
void wavelet(const std::vector<std::string> &cmd_units)
{
// wavelet \<data-name\> \<wavelet-name\> \<order\> [\<show-summary\>]
if (cmd_units.size() < 4) throw std::runtime_error("wavelet: insufficient parameters.");
gctl::array<std::string> copy_str(4, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 4); i++)
{
copy_str[i - 1] = cmd_units[i];
}
int order = order = atoi(copy_str[2].c_str());
if (copy_str[3] == "yes") rg.wavelet(copy_str[0], copy_str[1], order, true);
else rg.wavelet(copy_str[0], copy_str[1], order, false);
return;
}
void sum_data(const std::vector<std::string> &cmd_units)
{
// sum-data \<new-data-name\> \<data-name1\> \<data-name2\>
if (cmd_units.size() < 4) throw std::runtime_error("sum: insufficient parameters.");
gctl::array<std::string> copy_str(3, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 3); i++)
{
copy_str[i - 1] = cmd_units[i];
}
rg.sum(copy_str[0], copy_str[1], copy_str[2]);
return;
}
void diff_data(const std::vector<std::string> &cmd_units)
{
// sum-data \<new-data-name\> \<data-name1\> \<data-name2\>
if (cmd_units.size() < 4) throw std::runtime_error("diff: insufficient parameters.");
gctl::array<std::string> copy_str(3, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 3); i++)
{
copy_str[i - 1] = cmd_units[i];
}
rg.diff(copy_str[0], copy_str[1], copy_str[2]);
return;
}
void bool_data(const std::vector<std::string> &cmd_units)
{
// bool \<new-data-name\> \<data-name1> \<bool-data\> [reverse]
if (cmd_units.size() < 4) throw std::runtime_error("bool: insufficient parameters.");
gctl::array<std::string> copy_str(4, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 4); i++)
{
copy_str[i - 1] = cmd_units[i];
}
if (copy_str[3] == "reverse") rg.boolean(copy_str[0], copy_str[1], copy_str[2], true);
else rg.boolean(copy_str[0], copy_str[1], copy_str[2]);
return;
}
void func_data(const std::vector<std::string> &cmd_units)
{
// function \<expression\> \<new-data-name\>
if (cmd_units.size() < 3) throw std::runtime_error("function: insufficient parameters.");
gctl::array<std::string> copy_str(3, "null");
for (size_t i = 0; i <= GCTL_MIN(cmd_units.size() - 1, 3); i++)
{
copy_str[i] = cmd_units[i + 1];
}
rg.function(copy_str[0], copy_str[1]);
return;
}
void calculator(const std::vector<std::string> &cmd_units)
{
// calculator \<expression\> \<var1,data-name1\> \<var2,data-name2\>...
if (cmd_units.size() < 4) throw std::runtime_error("calculator: insufficient parameters.");
gctl::array<std::string> copy_str(cmd_units.size() - 1, "null");
for (size_t i = 1; i <= cmd_units.size() - 1; i++)
{
copy_str[i - 1] = cmd_units[i];
}
array<std::string> var_list(copy_str.size() - 1), data_list(copy_str.size() - 1);
for (size_t i = 0; i < var_list.size(); i++)
{
parse_string_to_value(copy_str[i + 1], ',', true, var_list[i], data_list[i]);
}
rg.calculator(copy_str[0], var_list, data_list);
return;
}
void data_output(const std::vector<std::string> &cmd_units)
{
// data-output enable|disable \<data-name1\> \<data-name2\>...
if (cmd_units.size() < 3) throw std::runtime_error("data-output: insufficient parameters.");
gctl::array<std::string> copy_str(cmd_units.size() - 1, "null");
for (size_t i = 1; i <= cmd_units.size() - 1; i++)
{
copy_str[i - 1] = cmd_units[i];
}
2025-01-13 14:49:46 +08:00
meshdata *data_ptr;
2024-09-10 20:02:00 +08:00
if (copy_str[0] == "enable")
{
for (size_t i = 1; i < copy_str.size(); i++)
{
2025-01-13 14:49:46 +08:00
data_ptr = rg.get_data_ptr(copy_str[i]);
data_ptr->output_ok_ = true;
2024-09-10 20:02:00 +08:00
}
}
else if (copy_str[0] == "disable")
{
for (size_t i = 1; i < copy_str.size(); i++)
{
2025-01-13 14:49:46 +08:00
data_ptr = rg.get_data_ptr(copy_str[i]);
data_ptr->output_ok_ = false;
2024-09-10 20:02:00 +08:00
}
}
else throw std::runtime_error("data-output: invalid operation type.");
return;
}
void data_rename(const std::vector<std::string> &cmd_units)
{
// data-rename [\<old-name\>] [\<new-name\>]
if (cmd_units.size() < 3) throw std::runtime_error("rename: insufficient parameters.");
gctl::array<std::string> copy_str(2, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 2); i++)
{
copy_str[i - 1] = cmd_units[i];
}
2025-01-13 14:49:46 +08:00
meshdata &curr_data = rg.get_data(copy_str[0]);
2025-01-12 23:39:36 +08:00
curr_data.name_ = copy_str[1];
2024-09-10 20:02:00 +08:00
return;
}
void data_view(const std::vector<std::string> &cmd_units)
{
// plot [\<data-name\>]...
if (cmd_units.size() < 2) throw std::runtime_error("view: insufficient parameters.");
for (size_t i = 1; i < cmd_units.size(); i++)
{
rg.view(cmd_units[i]);
}
return;
}
void data_plot(const std::vector<std::string> &cmd_units)
{
// plot [\<data-name\>]...
if (cmd_units.size() < 2) throw std::runtime_error("plot: insufficient parameters.");
for (size_t i = 1; i < cmd_units.size(); i++)
{
rg.plot(cmd_units[i]);
}
return;
}
void get_stats(const std::vector<std::string> &cmd_units)
{
// statistic \<data-name1\> \<data-name2\>...
if (cmd_units.size() < 2) throw std::runtime_error("statistic: insufficient parameters.");
gctl::array<std::string> copy_str(cmd_units.size() - 1, "null");
for (size_t i = 1; i <= cmd_units.size() - 1; i++)
{
copy_str[i - 1] = cmd_units[i];
}
2025-01-13 14:49:46 +08:00
meshdata *data_ptr;
2024-09-10 20:02:00 +08:00
std::vector<double> stats;
for (size_t i = 0; i < copy_str.size(); i++)
{
2025-01-13 14:49:46 +08:00
data_ptr = rg.get_data_ptr(copy_str[i]);
data_ptr->show_info();
data_ptr->show_stats();
2024-09-10 20:02:00 +08:00
}
return;
}
void get_profile(const std::vector<std::string> &cmd_units)
{
// profile \<data-name\> \<out-file\> {\<x\>,\<y\> \<x\>,\<y\> \<num\>}|{\<xy-file\> [\<file-format\>]}
if (cmd_units.size() < 4) throw std::runtime_error("profile: insufficient parameters.");
gctl::array<std::string> copy_str(5, "null");
for (size_t i = 1; i <= GCTL_MIN(cmd_units.size() - 1, 5); i++)
{
copy_str[i - 1] = cmd_units[i];
}
array<point2dc> xys;
array<double> p_data;
if (access(copy_str[2].c_str(), R_OK))
{
point2dc st_p, ed_p;
gctl::parse_string_to_value(copy_str[2], ',', true, st_p.x, st_p.y);
gctl::parse_string_to_value(copy_str[3], ',', true, ed_p.x, ed_p.y);
rg.extract_profile(copy_str[0], st_p, ed_p, atoi(copy_str[4].c_str()), xys, p_data);
}
else // File exist
{
2024-10-07 21:09:58 +08:00
text_descriptor desc;
desc.file_name_ = copy_str[2];
desc.file_ext_ = ".txt";
desc.att_sym_ = '#';
desc.col_str_ = "0,1";
desc.delimiter_ = ' ';
desc.head_num_ = 0;
2024-09-10 20:02:00 +08:00
if (copy_str[3] != "null")
{
2024-10-07 21:09:58 +08:00
gctl::parse_string_to_value(copy_str[3], '/', true, desc.col_str_, desc.delimiter_,
desc.att_sym_, desc.head_num_);
2024-09-10 20:02:00 +08:00
}
std::vector<double> xs, ys;
2024-10-07 21:09:58 +08:00
gctl::read_text2vectors(desc, xs, ys);
2024-09-10 20:02:00 +08:00
xys.resize(xs.size());
for (size_t i = 0; i < xys.size(); i++)
{
xys[i].x = xs[i];
xys[i].y = ys[i];
}
rg.extract_points(copy_str[0], xys, p_data);
}
std::ofstream ofile;
open_outfile(ofile, copy_str[1], ".txt");
ofile << "# x y d val\n";
for (size_t i = 0; i < xys.size(); i++)
{
ofile << xys[i].x << " " << xys[i].y << " " << distance(xys[0], xys[i]) << " " << p_data[i] << "\n";
}
ofile.close();
return;
}
int main(int argc, char *argv[])
{
if (argc >= 2)
{
std::string tmp_l;
std::ifstream cmdin;
// Run commands from files. Each line is a command.
// You can give more than one file
for (size_t i = 1; i < argc; i++) try
{
open_infile(cmdin, argv[i]);
while (getline(cmdin, tmp_l) && tmp_l != "" && tmp_l[0] != '#')
{
exec_cmd(tmp_l);
}
cmdin.close();
}
catch(std::exception& e)
{
GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, "run gridmanager in the interactive mode for instructions.", 0);
}
}
else
{
setlocale(LC_CTYPE, "");
initialize_readline(); /* Bind our completer. */
display_logo();
std::clog << "gridmanager - conversion, compuatation and manipulation of the grid data.\n";
std::clog << "Enter '?' to see all available commands.\n";
std::string cmd_str;
char *c_line = (char *)NULL;
char *c_line_s = (char *)NULL;
bool quit = false;
while (!quit) try
{
c_line = readline(">> ");
if (!c_line) break;
c_line_s = stripwhite(c_line);
cmd_str = c_line_s;
if (cmd_str == "quit") quit = true;
else if (cmd_str == "?") display_cmds();
else exec_cmd(cmd_str);
free(c_line);
}
catch(std::exception& e)
{
GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, "Enter 'help' for instructions.", 0);
}
}
return 0;
}