gctl_optimization/example/ex8.cpp

233 lines
6.0 KiB
C++
Raw Permalink Normal View History

2024-09-10 20:04:47 +08:00
/********************************************************
*
*
*
*
*
*
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "gctl/core.h"
#include "gctl/algorithm.h"
#include "../lib/optimization.h"
#define M 1000
#define N 900
// get random floating points
double random_double(double l, double t)
{
return (t-l)*rand()*1.0/RAND_MAX + l;
}
// get random integral numbers
int random_int(int small, int big)
{
return (rand() % (big - small)) + small;
}
double max_diff(const gctl::_1d_array &a, const gctl::_1d_array &b)
{
double max = -1.0;
for (size_t i = 0; i < a.size(); i++)
{
max = std::max(fabs(a[i] - b[i]), max);
}
return max;
}
class ex8 : public gctl::lbfgs_solver, public gctl::grad_norm
{
public:
ex8();
virtual ~ex8();
virtual double LBFGS_Evaluate(const gctl::_1d_array &x, gctl::_1d_array &g);
virtual int LBFGS_Progress(const gctl::_1d_array &x, const gctl::_1d_array &g, const double fx,
const double converge, const double rate, const gctl::lbfgs_para param, int k, int ls, std::ostream &ss);
void CalTarget(const gctl::_1d_array &x);
private:
gctl::_1d_array obs1, obs2, obs3, tmp, grad;
gctl::_2d_matrix k1, k2, k3;
};
ex8::ex8()
{
srand(time(0));
tmp.resize(M);
grad.resize(N);
k1.resize(M, N);
obs1.resize(M);
// 添加一些大数
int tmp_id, tmp_size;
double tmp_val;
for (int i = 0; i < M; i++)
{
tmp_size = random_int(25, 35);
for (int j = 0; j < tmp_size; j++)
{
tmp_id = random_int(0, N);
tmp_val = random_double(-1.0, 1.0);
k1[i][tmp_id] = tmp_val;
}
}
k2.resize(M, N);
obs2.resize(M);
// 添加一些大数
for (int i = 0; i < M; i++)
{
tmp_size = random_int(25, 35);
for (int j = 0; j < tmp_size; j++)
{
tmp_id = random_int(0, N);
tmp_val = random_double(-200.0, 200.0);
k2[i][tmp_id] = tmp_val;
}
}
k3.resize(M, N);
obs3.resize(M);
// 添加一些大数
for (int i = 0; i < M; i++)
{
tmp_size = random_int(25, 35);
for (int j = 0; j < tmp_size; j++)
{
tmp_id = random_int(0, N);
tmp_val = random_double(-0.01, 0.01);
k3[i][tmp_id] = tmp_val;
}
}
}
ex8::~ex8(){}
double ex8::LBFGS_Evaluate(const gctl::_1d_array &x, gctl::_1d_array &g)
{
gctl::matvec(tmp, k1, x);
tmp -= obs1;
gctl::matvec(grad, k1, tmp, gctl::Trans);
2024-09-19 22:14:47 +08:00
grad.scale(2.0/M);
2024-09-10 20:04:47 +08:00
2024-09-19 22:14:47 +08:00
AddSingleLoss(gctl::power2(tmp.module(gctl::L2))/M, grad);
2024-09-10 20:04:47 +08:00
gctl::matvec(tmp, k2, x);
tmp -= obs2;
gctl::matvec(grad, k2, tmp, gctl::Trans);
2024-09-19 22:14:47 +08:00
grad.scale(2.0/M);
2024-09-10 20:04:47 +08:00
2024-09-19 22:14:47 +08:00
AddSingleLoss(gctl::power2(tmp.module(gctl::L2))/M, grad);
2024-09-10 20:04:47 +08:00
gctl::matvec(tmp, k3, x);
tmp -= obs3;
gctl::matvec(grad, k3, tmp, gctl::Trans);
2024-09-19 22:14:47 +08:00
grad.scale(2.0/M);
2024-09-10 20:04:47 +08:00
2024-09-19 22:14:47 +08:00
AddSingleLoss(gctl::power2(tmp.module(gctl::L2))/M, grad);
2024-09-10 20:04:47 +08:00
return GradNormLoss(g);
}
int ex8::LBFGS_Progress(const gctl::_1d_array &x, const gctl::_1d_array &g, const double fx,
const double converge, const double rate, const gctl::lbfgs_para param, int k, int ls, std::ostream &ss)
{
UpdateWeights();
return gctl::lbfgs_solver::LBFGS_Progress(x, g, fx, converge, rate, param, k, ls, ss);
}
void ex8::CalTarget(const gctl::_1d_array &x)
{
// 计算正演值
gctl::matvec(obs1, k1, x);
for (int i = 0; i < M; i++)
{
// 添加噪声
obs1[i] += random_double(-1e-3, 1e-3);
}
gctl::matvec(obs2, k2, x);
for (int i = 0; i < M; i++)
{
// 添加噪声
obs2[i] += random_double(-1e-3, 1e-3);
}
gctl::matvec(obs3, k3, x);
for (int i = 0; i < M; i++)
{
// 添加噪声
obs3[i] += random_double(-1e-3, 1e-3);
}
return;
}
int main(int argc, char const *argv[])
{
// 生成一组正演解
gctl::_1d_array fm(N);
2024-09-19 22:14:47 +08:00
fm.random_float(1.0, 2.0, gctl::RdUniform);
2024-09-10 20:04:47 +08:00
ex8 test;
// 计算拟合目标项
test.CalTarget(fm);
// 声明一组解
gctl::_1d_array m(N, 0.0);
gctl::lbfgs_para self_para = test.default_lbfgs_para();
self_para.linesearch = gctl::LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE;
self_para.epsilon = 1e-6;
test.set_lbfgs_para(self_para);
test.show_lbfgs_para();
test.InitGradNorm(3, N);
test.set_control_weight(1.0);
test.set_weight_step(0.00001);
double fx = test.LBFGS_Minimize(m);
std::clog << "maximal difference: " << max_diff(fm, m) << std::endl;
gctl::_1d_array records;
test.get_records(records);
for (size_t i = 0; i < records.size(); i++)
{
if ((i+1)%3 == 0)
{
std::cout << records[i] << "\n";
}
else std::cout << records[i] << " ";
}
return 0;
}