gctl_optimization/lib/optimization/loss_func.h

125 lines
4.6 KiB
C
Raw Permalink Normal View History

2024-09-10 20:04:47 +08:00
/********************************************************
*
*
*
*
*
*
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#ifndef _GCTL_LOSS_FUNC_H
#define _GCTL_LOSS_FUNC_H
// library's head files
#include "gctl/core.h"
namespace gctl
{
2024-10-25 10:27:08 +08:00
/**
* @brief L1范数, L2范数平方Lp范数定义的数据拟合差及相应的模型偏导数
* Phi = Lp(d - d^tar)^2/num(d)
*/
2024-09-10 20:04:47 +08:00
class loss_func
{
public:
2024-10-25 10:27:08 +08:00
loss_func(); ///< 构造函数
/**
* @brief
*
* @param tar
* @param n_type
* @param p Lp范数的阶次
* @param eps Lp范数分母内的小值
*/
2024-10-07 12:54:38 +08:00
loss_func(const array<double> &tar, norm_type_e n_type, double p = 2.0, double eps = 1e-16);
2024-10-25 10:27:08 +08:00
virtual ~loss_func(); ///< 析构函数
2024-09-10 20:04:47 +08:00
2024-10-25 10:27:08 +08:00
/**
* @brief
*
* @param tar
* @param n_type
* @param p Lp范数的阶次
* @param eps Lp范数分母内的小值
*/
2024-10-07 12:54:38 +08:00
void init(const array<double> &tar, norm_type_e n_type, double p = 2.0, double eps = 1e-16);
2024-10-25 10:27:08 +08:00
/**
* @brief
*
* @param uncer
*/
2024-09-10 20:04:47 +08:00
void set_uncertainty(double uncer);
2024-10-25 10:27:08 +08:00
/**
* @brief
*
* @param uncer
*/
2024-09-10 20:04:47 +08:00
void set_uncertainty(const array<double> &uncer);
2024-10-08 11:25:52 +08:00
2024-10-25 10:27:08 +08:00
/**
* @brief
*
* @param inp
* @param id
* @return
*/
2024-10-08 11:25:52 +08:00
double evaluate(double inp, int id);
2024-10-25 10:27:08 +08:00
/**
* @brief
*
* @param x
* @param g
* @return
*/
2024-10-07 08:37:31 +08:00
double evaluate(const array<double> &x, array<double> &g);
2024-09-10 20:04:47 +08:00
2024-10-25 10:27:08 +08:00
/**
* @brief 0
*
* @return
*/
2024-10-08 11:25:52 +08:00
double get_loss();
2024-10-25 10:27:08 +08:00
/**
* @brief
*
* @param inp
* @param id
* @return
*/
2024-10-08 11:25:52 +08:00
double gradient(double inp, int id);
2024-09-10 20:04:47 +08:00
private:
2024-10-07 08:37:31 +08:00
bool init_;
2024-10-08 11:25:52 +08:00
double loss_, eps_, p_;
2024-10-07 08:37:31 +08:00
unsigned int tnum_;
norm_type_e ntype_;
array<double> tars_, diff_;
array<double> us_;
2024-09-10 20:04:47 +08:00
};
}
#endif // _GCTL_LOSS_FUNC_H