gctl_optimization/lib/optimization/lbfgs.h

559 lines
26 KiB
C
Raw Normal View History

2024-09-10 20:04:47 +08:00
/********************************************************
*
*
*
*
*
*
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#ifndef _GCTL_LBFGS_H
#define _GCTL_LBFGS_H
#include "gctl/core.h"
#include "gctl/maths.h"
#include "gctl/algorithm.h"
#include "gctl_optimization_config.h"
#ifdef GCTL_OPTIMIZATION_TOML
#include "toml.hpp"
#endif // GCTL_OPTIMIZATION_TOML
#if defined _WINDOWS || __WIN32__
#include "windows.h"
#endif // _WINDOWS || __WIN32__
namespace gctl
{
/**
* @brief Return value of the lbfgs() function. Roughly speaking, a negative value indicates an error.
*/
enum lbfgs_return_code
{
/** L-BFGS reaches convergence. */
LBFGS_EPS_CONVERGENCE = 0,
LBFGS_DELTA_CONVERGENCE,
LBFGS_RESI_CONVERGENCE,
LBFGS_STOP, //1
/** The initial variables already minimize the objective function. */
LBFGS_ALREADY_MINIMIZED, //2
/** Unknown error. */
LBFGSERR_UNKNOWNERROR = -1024,
/** Logic error. */
LBFGSERR_LOGICERROR, //-1023
/** Insufficient memory. */
LBFGSERR_OUTOFMEMORY, //-1022
/** The minimization process has been canceled. */
LBFGSERR_CANCELED,
/** Invalid number of variables specified. */
LBFGSERR_INVALID_N,
/** Invalid number of variables (for SSE) specified. */
LBFGSERR_INVALID_N_SSE,
/** The array x must be aligned to 16 (for SSE). */
LBFGSERR_INVALID_X_SSE,
/** Invalid parameter lbfgs_para::epsilon specified. */
LBFGSERR_INVALID_EPSILON,
/** Invalid parameter lbfgs_para::past specified. */
LBFGSERR_INVALID_TESTPERIOD,
/** Invalid parameter lbfgs_para::delta specified. */
LBFGSERR_INVALID_DELTA,
/** Invalid parameter lbfgs_para::linesearch specified. */
LBFGSERR_INVALID_LINESEARCH,
/** Invalid parameter lbfgs_para::max_step specified. */
LBFGSERR_INVALID_MINSTEP,
/** Invalid parameter lbfgs_para::max_step specified. */
LBFGSERR_INVALID_MAXSTEP,
/** Invalid parameter lbfgs_para::ftol specified. */
LBFGSERR_INVALID_FTOL,
/** Invalid parameter lbfgs_para::wolfe specified. */
LBFGSERR_INVALID_WOLFE,
/** Invalid parameter lbfgs_para::gtol specified. */
LBFGSERR_INVALID_GTOL,
/** Invalid parameter lbfgs_para::xtol specified. */
LBFGSERR_INVALID_XTOL,
/** Invalid parameter lbfgs_para::max_linesearch specified. */
LBFGSERR_INVALID_MAXLINESEARCH,
/** Invalid parameter lbfgs_para::orthantwise_c specified. */
LBFGSERR_INVALID_ORTHANTWISE,
/** Invalid parameter lbfgs_para::orthantwise_start specified. */
LBFGSERR_INVALID_ORTHANTWISE_START,
/** Invalid parameter lbfgs_para::orthantwise_end specified. */
LBFGSERR_INVALID_ORTHANTWISE_END,
/** The line-search step went out of the interval of uncertainty. */
LBFGSERR_OUTOFINTERVAL,
/** A logic error occurred; alternatively, the interval of uncertainty
became too small. */
LBFGSERR_INCORRECT_TMINMAX,
/** A rounding error occurred; alternatively, no line-search step
satisfies the sufficient decrease and curvature conditions. */
LBFGSERR_ROUNDING_ERROR,
/** The line-search step became smaller than lbfgs_para::min_step. */
LBFGSERR_MINIMUMSTEP,
/** The line-search step became larger than lbfgs_para::max_step. */
LBFGSERR_MAXIMUMSTEP,
/** The line-search routine reaches the maximum number of evaluations. */
LBFGSERR_MAXIMUMLINESEARCH,
/** The algorithm routine reaches the maximum number of iterations. */
LBFGSERR_MAXIMUMITERATION,
/** Relative width of the interval of uncertainty is at most
lbfgs_para::xtol. */
LBFGSERR_WIDTHTOOSMALL,
/** A logic error (negative line-search step) occurred. */
LBFGSERR_INVALIDPARAMETERS,
/** The current search direction increases the objective function value. */
LBFGSERR_INCREASEGRADIENT,
};
// 枚举类型 线性搜索方法
// 0 MoreThuente方法
// 1 Armijo条件方法
// 2 标准Wolfe条件方法
// 3 增强Wolfe条件方法
/**
* @brief Line search algorithms.
*/
enum line_search_type
{
/** The default algorithm (MoreThuente method). */
LBFGS_LINESEARCH_DEFAULT = 0,
/** MoreThuente method proposd by More and Thuente. */
LBFGS_LINESEARCH_MORETHUENTE = 0,
/**
* Backtracking method with the Armijo condition.
* The backtracking method finds the step length such that it satisfies
* the sufficient decrease (Armijo) condition,
* - f(x + a * d) <= f(x) + lbfgs_para::ftol * a * g(x)^T d,
*
* where x is the current point, d is the current search direction, and
* a is the step length.
*/
LBFGS_LINESEARCH_BACKTRACKING_ARMIJO = 1,
/** The backtracking method with the defualt (regular Wolfe) condition. */
LBFGS_LINESEARCH_BACKTRACKING = 2,
/**
* Backtracking method with regular Wolfe condition.
* The backtracking method finds the step length such that it satisfies
* both the Armijo condition (LBFGS_LINESEARCH_BACKTRACKING_ARMIJO)
* and the curvature condition,
* - g(x + a * d)^T d >= lbfgs_para::wolfe * g(x)^T d,
*
* where x is the current point, d is the current search direction, and
* a is the step length.
*/
LBFGS_LINESEARCH_BACKTRACKING_WOLFE = 2,
/**
* Backtracking method with strong Wolfe condition.
* The backtracking method finds the step length such that it satisfies
* both the Armijo condition (LBFGS_LINESEARCH_BACKTRACKING_ARMIJO)
* and the following condition,
* - |g(x + a * d)^T d| <= lbfgs_para::wolfe * |g(x)^T d|,
*
* where x is the current point, d is the current search direction, and
* a is the step length.
*/
LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 3,
LBFGS_LINESEARCH_BACKTRACKING_ARMIJO_QUAD = 4,
//LBFGS_LINESEARCH_BACKTRACKING_QUAD = 5,
//LBFGS_LINESEARCH_BACKTRACKING_WOLFE_QUAD = 5,
//LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE_QUAD = 6,
};
// L-BFGS参数类型。参数很多简要说明如下
// m L-BFGS算法中储存的前序sk与yk向量个数这个值控制了算法使用的内存多少默认值为6不建议小于3的值值多大近似精度越高计算量也越大。
// epsilon 迭代的终止精度默认值为1e-5
// past 以delta(不同迭代次数的目标函数值)为基础的迭代终止条件数past代表了以多少迭代次数之前的目标函数值作为delta计算的间隔默认值为0
// 即不以delta为迭代终止条件。
// delta (f' - f) / f 不同迭代次数时目标函数之差与当前目标函数值之比但past不为0时会计算。
// max_iterations 最大迭代次数为0时表示一直迭代到终止条件被满足或出现其他错误。
// linesearch 线性搜索方式,由此文件前述枚举类型定义。
// max_linesearch 每次迭代中线性搜索的最大次数默认值为40
// min_step 线性搜索中的最小步长默认值为1e-20
// max_step 线性搜索中的最大步长默认值为1e+20
// ftol 线性搜索的精度值默认值为1e-4取值范围0-0.5)。
// wolfe Wolfe线性搜索中的控制参数默认值为0.9大于ftol小于1.0
// gtol 线性搜索中的控制参数默认值为0.9大于ftol小于1.0
// xtol 浮点数精度默认值为1e-16
// orthantwise_c 模型参数x的L1模的乘积参数默认值为0.0此时算法即为L2模形式当此参数大于0时算法即为OWL-QN
// orthantwise_start 开始计算模型参数x的L1模的迭代序号
// orthantwise_end 终止计算模型参数x的L1模的迭代序号
/**
* L-BFGS optimization parameters.
* Call lbfgs_parameter_init() function to initialize parameters to the
* default values.
*/
struct lbfgs_para
{
/**
* The number of corrections to approximate the inverse hessian matrix.
* The L-BFGS routine stores the computation results of previous \ref m
* iterations to approximate the inverse hessian matrix of the current
* iteration. This parameter controls the size of the limited memories
* (corrections). The default value is \c 6. Values less than \c 3 are
* not recommended. Large values will result in excessive computing time.
*/
int m;
/**
* Epsilon for convergence test.
* This parameter determines the accuracy with which the solution is to
* be found. A minimization terminates when
* ||g|| < \ref epsilon * max(1, ||x||),
* where ||.|| denotes the Euclidean (L2) norm. The default value is
* \c 1e-5.
*/
double epsilon;
/**
* Distance for delta-based convergence test.
* This parameter determines the distance, in iterations, to compute
* the rate of decrease of the objective function. If the value of this
* parameter is zero, the library does not perform the delta-based
* convergence test. The default value is \c 0.
*/
int past;
/**
* Delta for convergence test.
* This parameter determines the minimum rate of decrease of the
* objective function. The library stops iterations when the
* following condition is met:
* (f' - f) / f < \ref delta,
* where f' is the objective value of \ref past iterations ago, and f is
* the objective value of the current iteration.
* The default value is \c 1e-5.
*/
double delta;
/**
* Residual for convergence test.
* This parameter determines the accuracy with which the solution is to
* be found. A minimization terminates when
* f(x) <= residual,
* The default value is \c 1e-8.
*
*/
double residual;
/**
* The maximum number of iterations.
* The lbfgs() function terminates an optimization process with
* ::LBFGSERR_MAXIMUMITERATION status code when the iteration count
* exceedes this parameter. Setting this parameter to zero continues an
* optimization process until a convergence or error. The default value
* is \c 0.
*/
int max_iterations;
/**
* The line search algorithm.
* This parameter specifies a line search algorithm to be used by the
* L-BFGS routine.
*/
int linesearch;
/**
* The maximum number of trials for the line search.
* This parameter controls the number of function and gradients evaluations
* per iteration for the line search routine. The default value is \c 40.
*/
int max_linesearch;
/**
* The minimum step of the line search routine.
* The default value is \c 1e-20. This value need not be modified unless
* the exponents are too large for the machine being used, or unless the
* problem is extremely badly scaled (in which case the exponents should
* be increased).
*/
double min_step;
/**
* The maximum step of the line search.
* The default value is \c 1e+20. This value need not be modified unless
* the exponents are too large for the machine being used, or unless the
* problem is extremely badly scaled (in which case the exponents should
* be increased).
*/
double max_step;
/**
* A parameter to control the accuracy of the line search routine.
* The default value is \c 1e-4. This parameter should be greater
* than zero and smaller than \c 0.5.
*/
double ftol;
/**
* A coefficient for the Wolfe condition.
* This parameter is valid only when the backtracking line-search
* algorithm is used with the Wolfe condition,
* ::LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE or
* ::LBFGS_LINESEARCH_BACKTRACKING_WOLFE .
* The default value is \c 0.9. This parameter should be greater
* the \ref ftol parameter and smaller than \c 1.0.
*/
double wolfe;
/**
* A parameter to control the accuracy of the line search routine.
* The default value is \c 0.9. If the function and gradient
* evaluations are inexpensive with respect to the cost of the
* iteration (which is sometimes the case when solving very large
* problems) it may be advantageous to set this parameter to a small
* value. A typical small value is \c 0.1. This parameter shuold be
* greater than the \ref ftol parameter (\c 1e-4) and smaller than
* \c 1.0.
*/
double gtol;
/**
* The machine precision for floating-point values.
* This parameter must be a positive value set by a client program to
* estimate the machine precision. The line search routine will terminate
* with the status code (::LBFGSERR_ROUNDING_ERROR) if the relative width
* of the interval of uncertainty is less than this parameter.
*/
double xtol;
/**
* Coeefficient for the L1 norm of variables.
* This parameter should be set to zero for standard minimization
* problems. Setting this parameter to a positive value activates
* Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) method, which
* minimizes the objective function F(x) combined with the L1 norm |x|
* of the variables, {F(x) + C |x|}. This parameter is the coeefficient
* for the |x|, i.e., C. As the L1 norm |x| is not differentiable at
* zero, the library modifies function and gradient evaluations from
* a client program suitably; a client program thus have only to return
* the function value F(x) and gradients G(x) as usual. The default value
* is zero.
*/
double orthantwise_c;
/**
* Start index for computing L1 norm of the variables.
* This parameter is valid only for OWL-QN method
* (i.e., \ref orthantwise_c != 0). This parameter b (0 <= b < N)
* specifies the index number from which the library computes the
* L1 norm of the variables x,
* |x| := |x_{b}| + |x_{b+1}| + ... + |x_{N}| .
* In other words, variables x_1, ..., x_{b-1} are not used for
* computing the L1 norm. Setting b (0 < b < N), one can protect
* variables, x_1, ..., x_{b-1} (e.g., a bias term of logistic
* regression) from being regularized. The default value is zero.
*/
int orthantwise_start;
/**
* End index for computing L1 norm of the variables.
* This parameter is valid only for OWL-QN method
* (i.e., \ref orthantwise_c != 0). This parameter e (0 < e <= N)
* specifies the index number at which the library stops computing the
* L1 norm of the variables x,
*/
int orthantwise_end;
};
class lbfgs_solver
{
private:
lbfgs_para lbfgs_param_; ///< lbfgs 算法参数
bool lbfgs_silent_; ///< 显示运行信息
// 算法函数是私有的不能直接使用通过Minimize函数调用
// 下面是L-BFGS的主函数各个参数的说明简要翻译如下
// n 数组的长度,也就是待求的模型参数的数量
// x 模型参数数组的指针,函数通过指针直接操作模型数组,所以不需要返回计算结果。一开始赋给函数的数组即为
// 初始模型,函数结束后即为最优化结果
// ptr_fx 目标函数的值的指针,设计成指针可以方便在函数外部监控迭代过程的收敛情况
// retval 返回值。无错即为0非0值代表此文件上部枚举类型中的对应错误。此文件下部定义的错误信息显示即利用此返回值与
// 预定义的枚举类型输出相应的错误信息。
/**
* Start a L-BFGS optimization.
*
* @param x The array of variables. A client program can set
* default values for the optimization and receive the
* optimization result through this array. This array
* must be allocated by ::lbfgs_malloc function
* for libLBFGS built with SSE/SSE2 optimization routine
* enabled. The library built without SSE/SSE2
* optimization does not have such a requirement.
* @param ptr_fx The pointer to the variable that receives the final
* value of the objective function for the variables.
* This argument can be set to \c NULL if the final
* value of the objective function is unnecessary.
* @retval The status code. This function returns zero if the
* minimization process terminates without an error. A
* non-zero value indicates an error.
*/
lbfgs_return_code lbfgs(array<double> &x, double &ptr_fx, std::ostream &ss);
lbfgs_return_code lbfgs_preconditioned(array<double> &x, double &ptr_fx, std::ostream &ss);
// 线性搜索方法 内部私有函数 不能直接使用
lbfgs_return_code line_search_backtracking(int n, gctl::array<double> &x, double *f, gctl::array<double> &g, gctl::array<double> &s,
double *stp, const gctl::array<double> &xp, const gctl::array<double> &gp, gctl::array<double> &wp, int &ls);
lbfgs_return_code line_search_backtracking_quad(int n, gctl::array<double> &x, double *f, gctl::array<double> &g, gctl::array<double> &s,
double *stp, const gctl::array<double> &xp, const gctl::array<double> &gp, gctl::array<double> &wp, int &ls);
lbfgs_return_code line_search_backtracking_owlqn(int n, gctl::array<double> &x, double *f, gctl::array<double> &g, gctl::array<double> &s,
double *stp, const gctl::array<double> &xp, const gctl::array<double> &gp, gctl::array<double> &wp, int &ls);
lbfgs_return_code line_search_morethuente(int n, gctl::array<double> &x, double *f, gctl::array<double> &g, gctl::array<double> &s,
double *stp, const gctl::array<double> &xp, const gctl::array<double> &gp, gctl::array<double> &wa, int &ls);
// 显示lbfgs函数返回值信息 主要是错误信息
void lbfgs_error_str(lbfgs_return_code err_code, std::ostream &ss = std::clog, bool err_throw = false);
public:
lbfgs_solver();
virtual ~lbfgs_solver();
/**
* @brief
*
*/
void lbfgs_silent();
/**
* @brief
*
* @param in_param
*/
void set_lbfgs_para(const lbfgs_para &in_param);
#ifdef GCTL_OPTIMIZATION_TOML
/**
* @brief
*
* @param toml_data toml数据对象
*/
void set_lbfgs_para(const toml::value &toml_data);
#endif // GCTL_OPTIMIZATION_TOML
/**
* @brief
*
* @return lbfgs_para
*/
lbfgs_para default_lbfgs_para();
/**
* @brief
*
* @param ss
*/
void show_lbfgs_para(std::ostream &ss = std::clog);
// 目标函数与其梯度值计算函数的接口,参数简要说明如下:
// x 当前的模型参数值的指针
// g 当前模型参数值对应的梯度指针
// step 当前线性搜索所使用的步长
// retval 当前模型参数的目标函数值
/**
* Callback interface to provide objective function and gradient evaluations.
*
* The lbfgs() function call this function to obtain the values of objective
* function and its gradients when needed. A client program must implement
* this function to evaluate the values of the objective function and its
* gradients, given current values of variables.
*
* @param x The current values of variables.
* @param g The gradient vector. The callback function must compute
* the gradient values for the current variables.
* @param step The current step of the line search routine.
* @retval double The value of the objective function for the current
* variables.
*/
virtual double LBFGS_Evaluate(const array<double> &x, array<double> &g) = 0;
/**
* Callback interface to implement the preconditioning process.
*
* The lbfgs() function call this function for each iteration. Implementing
* this function, a client program can preform the preconditioning process.
*
* @param x The current values of variables.
* @param g The current gradient values of variables.
* @param d The current values of search directions.
* @param d_pre The values of search directions being preconditioned.
* The callback function must compute these values.
*/
virtual void LBFGS_Precondition(const array<double> &x, const array<double> &g, const array<double> &d, array<double> &d_pre);
// 进程函数的接口,参数简要说明如下:
// x 当前的模型参数值的指针
// g 当前模型参数值对应的梯度指针
// fx 目标函数的值
// xnorm 模型参数数组的L2模长
// gnorm 模型梯度数组的L2模长
// step 当前线性搜索所使用的步长
// k 迭代的次数
// ls 此次迭代所使用的线性搜索次数
// retval 返回0则lbfgs()函数继续,否则终止
/**
* Callback interface to receive the progress of the optimization process.
*
* The lbfgs() function call this function for each iteration. Implementing
* this function, a client program can store or display the current progress
* of the optimization process.
*
* @param x The current values of variables.
* @param g The current gradient values of variables.
* @param fx The current value of the objective function.
* @param converge Current value of the convergence test.
* @param rate Current value of the delta-based convergence test.
* @param param 使
* @param k The iteration count.
* @param ls The number of evaluations called for this iteration.
* @param ss Output stream object.
* @retval int Zero to continue the optimization process. Returning a
* non-zero value will cancel the optimization process.
*/
virtual int LBFGS_Progress(const array<double> &x, const array<double> &g, const double fx,
const double converge, const double rate, const lbfgs_para param, int k, int ls, std::ostream &ss);
/**
* @brief
*
* @param m
* @param ss
* @param err_throw
* @return double
*/
double LBFGS_Minimize(array<double> &m, std::ostream &ss = std::clog, bool err_throw = false);
/**
* @brief
*
* @param m
* @param ss
* @param verbose 使
* @param err_throw
* @return double
*/
double LBFGS_MinimizePreconditioned(array<double> &m, std::ostream &ss = std::clog, bool err_throw = false);
};
}
#endif // _GCTL_LBFGS_H