2024-09-10 20:04:47 +08:00
|
|
|
|
/********************************************************
|
|
|
|
|
* ██████╗ ██████╗████████╗██╗
|
|
|
|
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
|
|
|
|
* ██║ ███╗██║ ██║ ██║
|
|
|
|
|
* ██║ ██║██║ ██║ ██║
|
|
|
|
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
|
|
|
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
|
|
|
|
* Geophysical Computational Tools & Library (GCTL)
|
|
|
|
|
*
|
|
|
|
|
* Copyright (c) 2023 Yi Zhang (yizhang-geo@zju.edu.cn)
|
|
|
|
|
*
|
|
|
|
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
|
|
|
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
|
|
|
|
* License as published by the Free Software Foundation, either version 2
|
|
|
|
|
* of the License, or (at your option) any later version. You should have
|
|
|
|
|
* received a copy of the GNU Lesser General Public License along with this
|
|
|
|
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
*
|
|
|
|
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
|
|
|
|
* the GCTL, please consider the option to obtain a commercial license for a
|
|
|
|
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
|
|
|
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
|
|
|
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
|
|
|
|
* to include some description of your company and the realm of its activities.
|
|
|
|
|
* Also add information on how to contact you by electronic and paper mail.
|
|
|
|
|
******************************************************/
|
|
|
|
|
|
|
|
|
|
#ifndef _GCTL_LOSS_FUNC_H
|
|
|
|
|
#define _GCTL_LOSS_FUNC_H
|
|
|
|
|
|
|
|
|
|
// library's head files
|
|
|
|
|
#include "gctl/core.h"
|
|
|
|
|
|
|
|
|
|
namespace gctl
|
|
|
|
|
{
|
2024-10-25 10:27:08 +08:00
|
|
|
|
/**
|
|
|
|
|
* @brief 损失函数对象,可计算L1范数, L2范数平方,Lp范数定义的数据拟合差及相应的模型偏导数(按数据个数归一化)。
|
|
|
|
|
* 损失函数的定义为:Phi = Lp(d - d^tar)^2/num(d)
|
|
|
|
|
*/
|
2024-09-10 20:04:47 +08:00
|
|
|
|
class loss_func
|
|
|
|
|
{
|
|
|
|
|
public:
|
2024-10-25 10:27:08 +08:00
|
|
|
|
loss_func(); ///< 构造函数
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief 构造函数
|
|
|
|
|
*
|
|
|
|
|
* @param tar 数据拟合差目标
|
|
|
|
|
* @param n_type 拟合差函数范数类型
|
|
|
|
|
* @param p Lp范数的阶次
|
|
|
|
|
* @param eps Lp范数分母内的小值(防止分母变为奇异值)
|
|
|
|
|
*/
|
2024-10-07 12:54:38 +08:00
|
|
|
|
loss_func(const array<double> &tar, norm_type_e n_type, double p = 2.0, double eps = 1e-16);
|
2024-10-25 10:27:08 +08:00
|
|
|
|
|
|
|
|
|
virtual ~loss_func(); ///< 析构函数
|
2024-09-10 20:04:47 +08:00
|
|
|
|
|
2024-10-25 10:27:08 +08:00
|
|
|
|
/**
|
|
|
|
|
* @brief 初始化函数
|
|
|
|
|
*
|
|
|
|
|
* @param tar 数据拟合差目标
|
|
|
|
|
* @param n_type 拟合差函数范数类型
|
|
|
|
|
* @param p Lp范数的阶次
|
|
|
|
|
* @param eps Lp范数分母内的小值(防止分母变为奇异值)
|
|
|
|
|
*/
|
2024-10-07 12:54:38 +08:00
|
|
|
|
void init(const array<double> &tar, norm_type_e n_type, double p = 2.0, double eps = 1e-16);
|
2024-10-25 10:27:08 +08:00
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief 设置目标数据的不确定度
|
|
|
|
|
*
|
|
|
|
|
* @param uncer 不确定度
|
|
|
|
|
*/
|
2024-09-10 20:04:47 +08:00
|
|
|
|
void set_uncertainty(double uncer);
|
2024-10-25 10:27:08 +08:00
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief 设置目标数据的不确定度
|
|
|
|
|
*
|
|
|
|
|
* @param uncer 不确定度数组,长度与目标数据一致
|
|
|
|
|
*/
|
2024-09-10 20:04:47 +08:00
|
|
|
|
void set_uncertainty(const array<double> &uncer);
|
2024-10-08 11:25:52 +08:00
|
|
|
|
|
2024-10-25 10:27:08 +08:00
|
|
|
|
/**
|
|
|
|
|
* @brief 计算单个输入模型数据的拟合差,同时将计算值累计至内部变量
|
|
|
|
|
*
|
|
|
|
|
* @param inp 输入数据值
|
|
|
|
|
* @param id 输入数据的索引
|
|
|
|
|
* @return 单个数据拟合差值
|
|
|
|
|
*/
|
2024-10-08 11:25:52 +08:00
|
|
|
|
double evaluate(double inp, int id);
|
2024-10-25 10:27:08 +08:00
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief 计算输入模型的数据拟合差与模型梯度
|
|
|
|
|
*
|
|
|
|
|
* @param x 输入模型,长度与目标数据相等
|
|
|
|
|
* @param g 数据拟合差相对于模型的梯度
|
|
|
|
|
* @return 数据拟合差值
|
|
|
|
|
*/
|
2024-10-07 08:37:31 +08:00
|
|
|
|
double evaluate(const array<double> &x, array<double> &g);
|
2024-09-10 20:04:47 +08:00
|
|
|
|
|
2024-10-25 10:27:08 +08:00
|
|
|
|
/**
|
|
|
|
|
* @brief 返回内置的数据拟合差函数值,然后将值重设为0
|
|
|
|
|
*
|
|
|
|
|
* @return 累计的数据拟合差
|
|
|
|
|
*/
|
2024-10-08 11:25:52 +08:00
|
|
|
|
double get_loss();
|
2024-10-25 10:27:08 +08:00
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief 计算数据拟合差函数相对于单个输入模型数据的梯度
|
|
|
|
|
*
|
|
|
|
|
* @param inp 输入数据值
|
|
|
|
|
* @param id 输入数据的索引
|
|
|
|
|
* @return 单个数据拟合差函数的梯度
|
|
|
|
|
*/
|
2024-10-08 11:25:52 +08:00
|
|
|
|
double gradient(double inp, int id);
|
|
|
|
|
|
2024-09-10 20:04:47 +08:00
|
|
|
|
private:
|
2024-10-07 08:37:31 +08:00
|
|
|
|
bool init_;
|
2024-10-08 11:25:52 +08:00
|
|
|
|
double loss_, eps_, p_;
|
2024-10-07 08:37:31 +08:00
|
|
|
|
unsigned int tnum_;
|
|
|
|
|
norm_type_e ntype_;
|
|
|
|
|
array<double> tars_, diff_;
|
|
|
|
|
array<double> us_;
|
2024-09-10 20:04:47 +08:00
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // _GCTL_LOSS_FUNC_H
|