/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see .
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#ifndef _GCTL_LGD_H
#define _GCTL_LGD_H
#include "gctl/core.h"
#include "gctl/io.h"
#include "gctl/maths.h"
#include "gctl/algorithm.h"
#include "gctl_optimization_config.h"
#ifdef GCTL_OPTIMIZATION_TOML
#include "toml.hpp"
#endif // GCTL_OPTIMIZATION_TOML
#if defined _WINDOWS || __WIN32__
#include "windows.h"
#endif // _WINDOWS || __WIN32__
#ifdef GSTL_OPENMP
#include "omp.h"
#endif // GSTL_OPENMP
namespace gctl
{
/**
* @brief return value of the lgd_solver class.
*/
enum lgd_return_code
{
LGD_CONVERGENCE = 1, ///< The iteration reached convergence.
LGD_STOP, ///< The iteration stopped by the progress monitoring function.
LGD_REACHED_MAX_ITERATIONS, ///< Iteration reached max limit.
LGD_INVALID_SOLUTION_SIZE = -1024, ///< Invalid solution size.
LGD_INVALID_MAX_ITERATIONS, ///< The maximal iteration times is negative.
LGD_INVALID_EPSILON, ///< The epsilon is negative.
LGD_INVALID_STDV,
LGD_INVALID_BETA, ///< Invalid value for beta.
LGD_INVALID_ALPHA,
LGD_INVALID_SIGMA,
LGD_NAN_VALUE, ///< Nan value.
};
/**
* @brief Parameters of the L-GD method.
*/
struct lgd_para
{
/**
* Maximal times of the lévy flight. The iteration process will stop till the maximal
* flight times is reached unless the mean convergence test is set and satisfied. To
* active the test, set the 'batch' parameter which is shown as below. The default value
* is 1000.
*/
int flight_times;
/**
* Batch size for the mean convergence test. This parameter determines the batch size,
* in recorded solutions, to compute the value of the objective function. Note that
* only qualified solutions will be recorded for analyzing if the 'lambda' parameter is
* set. The library does not perform the mean convergence test if the value of this
* parameter is zero. The default is 0.
*/
int batch;
/**
* Random seed for generating the Lévy distribution. Input zero for setting the seed according
* to the current time value. The default is 0.
*/
int seed;
/**
* Epsilon for the mean convergence test. This parameter determines the accuracy
* with which the mean solution is to be found. The default is 1e-5.
*/
double epsilon;
/**
* Standard deviation of v that is used to calculate the distance of each
* lévy flight in length = stddev_u/|stddev_v|^{1/beta}. This parameter is
* typically given as 1.0.
*/
double stddev_v;
/**
* Scale parameter for calculating stddev_u and the flying length. Must be at
* (1.0, 2.0). The default value is 1.5. The bigger beta is the smaller of the
* range of flying length gets.
*/
double beta;
/**
* Scale parameter multiplied by the flying length. The default value is 0.01.
* The parameter should be set according to the expected convergence speed. Normally,
* The bigger alpha is, the faster the L-GD convergences. However, the L-GD may
* miss the optimized solutions if alpha was too big.
*/
double alpha;
/**
* Sigma for the stagnation point test. The algorithm will take one search
* orthogonal with the last iteration if the module of the gradients is smaller
* than sigma. This mechanism helps the algorithm escaping from stagnation
* points such as local minimal or saddle points.The default is 1e-8.
*/
double sigma;
/**
* Threshold for recording the search paths. If the value is bigger then zero, then
* only values of the objective function that are smaller to equal to the threshold be
* used for statistic analyzing. Otherwise, all records will be used. The recorded paths
* could be save to file using the save_lgd_trace(string) function if set_lgd_record_trace()
* is set. The default is -1.0.
*/
double lambda;
/**
* @brief First order moment. The default value is 0.5.
*
*/
double fmt;
/**
* @brief Second order moment. The default value is 0.05.
*
*/
double smt;
};
/**
* @brief The lévy gradient descent solver (LGD).
*
*/
class lgd_solver
{
public:
lgd_solver(); ///< Default constructor.
virtual ~lgd_solver(); ///< Default de-constructor.
/**
* @brief Interface for the evaluation of the objective function. Concrete
* contents of this function is determined according to the optimizing problem.
*
* @param x Inputs of the current solution.
* @param g Outputs of the model gradient calculated using the input solution.
* @return Current objective value.
*/
virtual double LGD_Evaluate(const array &x, array &g) = 0;
/**
* @brief Default monitoring function of the optimizing process.
*
* @param best_fx Objective value of the best solution.
* @param curr_fx Objective value of the current solution.
* @param mean_fx Objective value of the mean solution.
* @param param L-GD's parameters used for the optimzing process.
* @param curr_t Current flight times.
* @return The optimizing process will be stopped if a non-zero value is returned.
*/
virtual int LGD_Progress(const int curr_t, const double curr_fx, const double mean_fx,
const double best_fx, const lgd_para ¶m);
/**
* @brief Susppend all output info.
*
*/
void lgd_silent();
/**
* @brief Set interval to run the LGD_Progress function.
*
* @param inter
*/
void set_lgd_report_interval(int inter);
/**
* @brief Show solver setup.
*
*/
void show_solver();
/**
* @brief Turn on the recording of fight traces. Use this with caution as it may use a lot of momeries.
*
*/
void set_lgd_record_trace();
/**
* @brief Save fight traces to file.
*
* @note Must turn on the trace recording for this function to work properly.
* Only qualified solutions will be saved if the recording threshold is set.
*
* @param trace_file output file.
*/
void save_lgd_trace(std::string trace_file);
/**
* @brief 按照levy分布采样一组数据,参数可通过set_lgd_para函数设置
*
* @param dist 返回的levy分布
*
* @return 状态代码
*/
lgd_return_code get_levy_distribution(array &dist);
lgd_para default_lgd_para();
void set_lgd_para(const lgd_para ¶m);
#ifdef GCTL_OPTIMIZATION_TOML
/**
* @brief Set parameters of the levy-gradient descent algorithm using a toml file.
* All parameter options must be listed under a top-level table 'lgd'. Available options
* under the 'lgd' table are as declared in the lgd_para structure.
*
* @param filename Input configuration file
*/
void set_lgd_para(std::string filename);
/**
* @brief Set parameters of the levy-gradient descent algorithm using a toml file.
* All parameter options must be listed under a top-level table 'lgd'. Available options
* under the 'lgd' table are as declared in the lgd_para structure.
*
* @param toml_data Input toml data
*/
void set_lgd_para(const toml::value &toml_data);
#endif // GCTL_OPTIMIZATION_TOML
void LGD_Minimize(array &best_m, array &mean_m, array &std_m,
std::ostream &ss = std::clog, bool verbose = true, bool err_throw = false);
void LGD_Minimize(array &best_m, array &mean_m, array &std_m,
const array &alphas, std::ostream &ss = std::clog,
bool verbose = true, bool err_throw = false);
void LGD_Minimize(array &best_m, array &mean_m, array &std_m,
const array &lows, const array &higs, std::ostream &ss = std::clog,
bool verbose = true, bool err_throw = false);
void LGD_Minimize(array &best_m, array &mean_m, array &std_m,
double low, double hig, std::ostream &ss = std::clog, bool verbose = true,
bool err_throw = false);
void LGD_Minimize_Momentum(array &best_m, array &mean_m, array &std_m,
std::ostream &ss = std::clog, bool verbose = true, bool err_throw = false);
void LGD_Minimize_Momentum(array &best_m, array &mean_m, array &std_m,
const array &lows, const array &higs, std::ostream &ss = std::clog,
bool verbose = true, bool err_throw = false);
private:
void lgd_error_str(lgd_return_code err_code, std::ostream &ss = std::clog, bool err_throw = false);
lgd_return_code lgd(array &best_m, array &mean_m, array &std_m);
lgd_return_code lgd_momentum(array &best_m, array &mean_m, array &std_m);
private:
lgd_para lgd_param_;
int lgd_inter_, lgd_ques_num_, lgd_trace_times_;
bool lgd_silent_, lgd_has_range_, lgd_has_alpha_, lgd_save_trace_;
array lgd_low_, lgd_hig_, lgd_alpha_, lgd_trace_;
};
}
#endif // _GCTL_LGD_H