/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "gctl/core.h" #include "gctl/algorithm.h" #include "../lib/optimization.h" #define M 1000 #define N 900 // get random floating points double random_double(double l, double t) { return (t-l)*rand()*1.0/RAND_MAX + l; } // get random integral numbers int random_int(int small, int big) { return (rand() % (big - small)) + small; } double max_diff(const gctl::_1d_array &a, const gctl::_1d_array &b) { double max = -1.0; for (size_t i = 0; i < a.size(); i++) { max = std::max(fabs(a[i] - b[i]), max); } return max; } class ex8 : public gctl::lbfgs_solver, public gctl::grad_norm { public: ex8(); virtual ~ex8(); virtual double LBFGS_Evaluate(const gctl::_1d_array &x, gctl::_1d_array &g); virtual int LBFGS_Progress(const gctl::_1d_array &x, const gctl::_1d_array &g, const double fx, const double converge, const double rate, const gctl::lbfgs_para param, int k, int ls, std::ostream &ss); void CalTarget(const gctl::_1d_array &x); private: gctl::_1d_array obs1, obs2, obs3, tmp, grad; gctl::_2d_matrix k1, k2, k3; }; ex8::ex8() { srand(time(0)); tmp.resize(M); grad.resize(N); k1.resize(M, N); obs1.resize(M); // 添加一些大数 int tmp_id, tmp_size; double tmp_val; for (int i = 0; i < M; i++) { tmp_size = random_int(25, 35); for (int j = 0; j < tmp_size; j++) { tmp_id = random_int(0, N); tmp_val = random_double(-1.0, 1.0); k1[i][tmp_id] = tmp_val; } } k2.resize(M, N); obs2.resize(M); // 添加一些大数 for (int i = 0; i < M; i++) { tmp_size = random_int(25, 35); for (int j = 0; j < tmp_size; j++) { tmp_id = random_int(0, N); tmp_val = random_double(-200.0, 200.0); k2[i][tmp_id] = tmp_val; } } k3.resize(M, N); obs3.resize(M); // 添加一些大数 for (int i = 0; i < M; i++) { tmp_size = random_int(25, 35); for (int j = 0; j < tmp_size; j++) { tmp_id = random_int(0, N); tmp_val = random_double(-0.01, 0.01); k3[i][tmp_id] = tmp_val; } } } ex8::~ex8(){} double ex8::LBFGS_Evaluate(const gctl::_1d_array &x, gctl::_1d_array &g) { gctl::matvec(tmp, k1, x); tmp -= obs1; gctl::matvec(grad, k1, tmp, gctl::Trans); gctl::scale(grad, 2.0/M); AddSingleLoss(gctl::power2(gctl::module(tmp, gctl::L2))/M, grad); gctl::matvec(tmp, k2, x); tmp -= obs2; gctl::matvec(grad, k2, tmp, gctl::Trans); gctl::scale(grad, 2.0/M); AddSingleLoss(gctl::power2(gctl::module(tmp, gctl::L2))/M, grad); gctl::matvec(tmp, k3, x); tmp -= obs3; gctl::matvec(grad, k3, tmp, gctl::Trans); gctl::scale(grad, 2.0/M); AddSingleLoss(gctl::power2(gctl::module(tmp, gctl::L2))/M, grad); return GradNormLoss(g); } int ex8::LBFGS_Progress(const gctl::_1d_array &x, const gctl::_1d_array &g, const double fx, const double converge, const double rate, const gctl::lbfgs_para param, int k, int ls, std::ostream &ss) { UpdateWeights(); return gctl::lbfgs_solver::LBFGS_Progress(x, g, fx, converge, rate, param, k, ls, ss); } void ex8::CalTarget(const gctl::_1d_array &x) { // 计算正演值 gctl::matvec(obs1, k1, x); for (int i = 0; i < M; i++) { // 添加噪声 obs1[i] += random_double(-1e-3, 1e-3); } gctl::matvec(obs2, k2, x); for (int i = 0; i < M; i++) { // 添加噪声 obs2[i] += random_double(-1e-3, 1e-3); } gctl::matvec(obs3, k3, x); for (int i = 0; i < M; i++) { // 添加噪声 obs3[i] += random_double(-1e-3, 1e-3); } return; } int main(int argc, char const *argv[]) { // 生成一组正演解 gctl::_1d_array fm(N); random(fm, 1.0, 2.0, gctl::RdUniform); ex8 test; // 计算拟合目标项 test.CalTarget(fm); // 声明一组解 gctl::_1d_array m(N, 0.0); gctl::lbfgs_para self_para = test.default_lbfgs_para(); self_para.linesearch = gctl::LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE; self_para.epsilon = 1e-6; test.set_lbfgs_para(self_para); test.show_lbfgs_para(); test.InitGradNorm(3, N); test.set_control_weight(1.0); test.set_weight_step(0.00001); double fx = test.LBFGS_Minimize(m); std::clog << "maximal difference: " << max_diff(fm, m) << std::endl; gctl::_1d_array records; test.get_records(records); for (size_t i = 0; i < records.size(); i++) { if ((i+1)%3 == 0) { std::cout << records[i] << "\n"; } else std::cout << records[i] << " "; } return 0; }