/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see .
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "clcg.h"
/**
* Default parameter for conjugate gradient methods
*/
static const gctl::clcg_para clcg_defparam = {0, 1e-8, 0};
int gctl::clcg_solver::CLCG_Progress(const array > &m, const double converge, const clcg_para ¶m, size_t t)
{
if (converge <= param.epsilon)
{
std::clog << GCTL_CLEARLINE << "\rIteration-times: " << t << "\tconvergence: " << converge;
return 0;
}
if (clcg_inter_ > 0 && t%clcg_inter_ == 0)
{
std::clog << GCTL_CLEARLINE << "\rIteration-times: " << t << "\tconvergence: " << converge;
}
return 0;
}
gctl::clcg_solver::clcg_solver()
{
clcg_param_ = clcg_defparam;
clcg_inter_ = 1;
clcg_silent_ = false;
}
gctl::clcg_solver::~clcg_solver(){}
void gctl::clcg_solver::clcg_silent()
{
clcg_silent_ = true;
return;
}
void gctl::clcg_solver::set_clcg_report_interval(size_t inter)
{
clcg_inter_ = inter;
return;
}
void gctl::clcg_solver::set_clcg_para(const clcg_para &in_param)
{
clcg_param_ = in_param;
return;
}
void gctl::clcg_solver::set_clcg_para(const toml::value &toml_data)
{
clcg_param_ = clcg_defparam;
std::string CLCG = "clcg";
if (toml_data.contains(CLCG))
{
if (toml_data.at(CLCG).contains("max_iterations")) clcg_param_.max_iterations = toml::find(toml_data, CLCG, "max_iterations");
if (toml_data.at(CLCG).contains("epsilon")) clcg_param_.epsilon = toml::find(toml_data, CLCG, "epsilon");
if (toml_data.at(CLCG).contains("abs_diff")) clcg_param_.abs_diff = toml::find(toml_data, CLCG, "abs_diff");
}
return;
}
void gctl::clcg_solver::clcg_error_str(clcg_return_code err_code, std::ostream &ss, bool err_throw)
{
#if defined _WINDOWS || __WIN32__
if (!er_throw)
{
if (err_code >= 0)
{
SetConsoleTextAttribute(GetStdHandle(STD_ERROR_HANDLE), FOREGROUND_INTENSITY | FOREGROUND_GREEN);
ss << "Success! ";
}
else
{
SetConsoleTextAttribute(GetStdHandle(STD_ERROR_HANDLE), FOREGROUND_INTENSITY | FOREGROUND_RED);
ss << "Fail! ";
}
}
#else
if (!err_throw)
{
if (err_code >= 0)
ss << "\033[1m\033[32mCLCG Success! ";
else
ss << "\033[1m\033[31mCLCG Fail! ";
}
#endif
std::string err_str;
switch (err_code)
{
case CLCG_SUCCESS:
err_str = "Iteration reached convergence."; break;
case CLCG_STOP:
err_str = "Iteration is stopped by the progress evaluation function."; break;
case CLCG_ALREADY_OPTIMIZIED:
err_str = "The variables are already optimized."; break;
case CLCG_UNKNOWN_ERROR:
err_str = "Unknown error."; break;
case CLCG_INVILAD_VARIABLE_SIZE:
err_str = "The size of the variables is negative."; break;
case CLCG_INVILAD_MAX_ITERATIONS:
err_str = "The maximal iteration times is negative."; break;
case CLCG_INVILAD_EPSILON:
err_str = "The epsilon is not in the range (0, 1)."; break;
case CLCG_REACHED_MAX_ITERATIONS:
err_str = "The maximal iteration has been reached."; break;
case CLCG_NAN_VALUE:
err_str = "The model values are NaN."; break;
case CLCG_INVALID_POINTER:
err_str = "Invalid pointer."; break;
case CLCG_SIZE_NOT_MATCH:
err_str = "The sizes of the solution and target do not match."; break;
case CLCG_UNKNOWN_SOLVER:
err_str = "Unknown solver."; break;
default:
err_str = "Unknown error."; break;
}
if (err_throw && err_code < 0) throw std::runtime_error(err_str.c_str());
else ss << err_str;
#if defined _WINDOWS || __WIN32__
if (!er_throw)
{
if (err_code >= 0)
{
SetConsoleTextAttribute(GetStdHandle(STD_ERROR_HANDLE), 7);
ss << std::endl;
}
else
{
SetConsoleTextAttribute(GetStdHandle(STD_ERROR_HANDLE), 7);
ss << std::endl;
}
}
#else
if (!err_throw)
{
if (err_code >= 0)
ss << "\033[0m" << std::endl;
else
ss << "\033[0m" << std::endl;
}
#endif
return;
}
gctl::clcg_para gctl::clcg_solver::default_clcg_para()
{
clcg_para dp = clcg_defparam;
return dp;
}
void gctl::clcg_solver::CLCG_Minimize(array > &m, const array > &B,
clcg_solver_type solver_id, std::ostream &ss, bool verbose, bool er_throw)
{
if (clcg_silent_)
{
clcg_return_code ret;
if (solver_id == CLCG_BICG) ret = clbicg(m, B);
else if (solver_id == CLCG_BICG_SYM) ret = clbicg_symmetric(m, B);
else if (solver_id == CLCG_CGS) ret = clcgs(m, B);
else if (solver_id == CLCG_BICGSTAB) ret = clbicgstab(m, B);
else if (solver_id == CLCG_TFQMR) ret = cltfqmr(m, B);
else throw std::invalid_argument("Invalid solver type. gctl::clcg_solver::Minimize(...)");
if (ret < 0) clcg_error_str(ret, ss, true);
return;
}
#ifdef GCTL_OPENMP
double start = omp_get_wtime();
clcg_return_code ret;
if (solver_id == CLCG_BICG) ret = clbicg(m, B);
else if (solver_id == CLCG_BICG_SYM) ret = clbicg_symmetric(m, B);
else if (solver_id == CLCG_CGS) ret = clcgs(m, B);
else if (solver_id == CLCG_BICGSTAB) ret = clbicgstab(m, B);
else if (solver_id == CLCG_TFQMR) ret = cltfqmr(m, B);
else throw std::invalid_argument("Invalid solver type. gctl::clcg_solver::Minimize(...)");
double end = omp_get_wtime();
double costime = 1000*(end-start);
#else
clock_t start = clock();
clcg_return_code ret;
if (solver_id == CLCG_BICG) ret = clbicg(m, B);
else if (solver_id == CLCG_BICG_SYM) ret = clbicg_symmetric(m, B);
else if (solver_id == CLCG_CGS) ret = clcgs(m, B);
else if (solver_id == CLCG_BICGSTAB) ret = clbicgstab(m, B);
else if (solver_id == CLCG_TFQMR) ret = cltfqmr(m, B);
else throw std::invalid_argument("Invalid solver type. gctl::clcg_solver::Minimize(...)");
clock_t end = clock();
double costime = 1000*(end-start)/(double)CLOCKS_PER_SEC;
#endif
if (!er_throw)
{
ss << std::endl;
switch (solver_id)
{
case CLCG_BICG:
std::clog << "Solver: Bi-CG. Times cost: " << costime << " ms" << std::endl;
break;
case CLCG_BICG_SYM:
std::clog << "Solver: Bi-CG (symmetrically accelerated). Times cost: " << costime << " ms" << std::endl;
break;
case CLCG_CGS:
std::clog << "Solver: CGS. Times cost: " << costime << " ms" << std::endl;
break;
case CLCG_BICGSTAB:
std::clog << "Solver: CGS. Times cost: " << costime << " ms" << std::endl;
break;
case CLCG_TFQMR:
std::clog << "Solver: TFQMR. Times cost: " << costime << " ms" << std::endl;
break;
default:
std::clog << "Solver: Unknown. Times cost: " << costime << " ms" << std::endl;
break;
}
}
if (verbose) clcg_error_str(ret, ss, er_throw);
else if (ret < 0) clcg_error_str(ret, ss, er_throw);
return;
}
gctl::clcg_return_code gctl::clcg_solver::clbicg(array > &m, const array > &B)
{
clcg_return_code ret;
return ret;
}
gctl::clcg_return_code gctl::clcg_solver::clbicg_symmetric(array > &m, const array > &B)
{
size_t n_size = B.size();
//check parameters
if (n_size <= 0) return CLCG_INVILAD_VARIABLE_SIZE;
if (clcg_param_.max_iterations < 0) return CLCG_INVILAD_MAX_ITERATIONS;
if (clcg_param_.epsilon <= 0.0 || clcg_param_.epsilon >= 1.0) return CLCG_INVILAD_EPSILON;
r1k.resize(n_size);
d1k.resize(n_size);
Ax.resize(n_size);
CLCG_Ax(m, Ax, gctl::NoTrans, gctl::NoConj);
std::complex one_z(1.0, 0.0);
vecdiff(r1k, B, Ax, one_z, one_z);
veccpy(d1k, r1k, one_z);
std::complex rkrk = vecdot(r1k, r1k);
double r0_square, rk_square;
std::complex r0_mod, rk_mod;
rk_mod = vecinner(r1k, r1k);
r0_square = rk_square = std::norm(rk_mod);
if (r0_square < 1.0) r0_square = 1.0;
clcg_return_code ret;
if (clcg_param_.abs_diff && sqrt(rk_square)/n_size <= clcg_param_.epsilon)
{
ret = CLCG_ALREADY_OPTIMIZIED;
CLCG_Progress(m, sqrt(rk_square)/n_size, clcg_param_, 0);
return ret;
}
else if (rk_square/r0_square <= clcg_param_.epsilon)
{
ret = CLCG_ALREADY_OPTIMIZIED;
CLCG_Progress(m, rk_square/r0_square, clcg_param_, 0);
return ret;
}
double residual;
std::complex ak, rkrk2, betak, dkAx;
size_t t = 0;
while(1)
{
if (clcg_param_.abs_diff) residual = sqrt(rk_square)/n_size;
else residual = rk_square/r0_square;
if (CLCG_Progress(m, residual, clcg_param_, t))
{
ret = CLCG_STOP; return ret;
}
if (residual <= clcg_param_.epsilon)
{
ret = CLCG_CONVERGENCE; return ret;
}
if (clcg_param_.max_iterations > 0 && t+1 > clcg_param_.max_iterations)
{
ret = CLCG_REACHED_MAX_ITERATIONS;
break;
}
t++;
CLCG_Ax(d1k, Ax, gctl::NoTrans, gctl::NoConj);
dkAx = vecdot(d1k, Ax);
ak = rkrk/dkAx;
vecapp(m, d1k, ak);
vecsub(r1k, Ax, ak);
rk_mod = vecdot(r1k, r1k);
rk_square = std::norm(rk_mod);
if (!vecvalid(m))
{
ret = CLCG_NAN_VALUE; return ret;
}
rkrk2 = vecdot(r1k, r1k);
betak = rkrk2/rkrk;
rkrk = rkrk2;
vecadd(d1k, d1k, r1k, betak, one_z);
}
return ret;
}
gctl::clcg_return_code gctl::clcg_solver::clcgs(array > &m, const array > &B)
{
clcg_return_code ret;
return ret;
}
gctl::clcg_return_code gctl::clcg_solver::clbicgstab(array > &m, const array > &B)
{
clcg_return_code ret;
return ret;
}
gctl::clcg_return_code gctl::clcg_solver::cltfqmr(array > &m, const array > &B)
{
clcg_return_code ret;
return ret;
}