/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see .
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "gctl/core.h"
#include "gctl/io.h"
#include "../lib/potential.h"
#include "iostream"
int main(int argc, char const *argv[]) try
{
// set up observation parameters and block parameters
double lon, lat;
gctl::array obes(101*101);
for (int i = 0; i < 101; i++)
{
lat = 10.0 + 0.1*i;
for (int j = 0; j < 101; j++)
{
lon = 20.0 + 0.1*j;
obes[i*101+j].lon = lon;
obes[i*101+j].lat = lat;
obes[i*101+j].rad = GCTL_Earth_Radius + 40000.0;
}
}
gctl::array tesses(1);
gctl::array mtess(1);
gctl::_1d_array inclina(1, 60.0), declina(1, 20.0);
tesses[0].set(GCTL_Earth_Radius - 21000.0, GCTL_Earth_Radius - 1000.0, 24, 26, 14, 16);
gctl::callink_magnetic_para_earth_sph(tesses, mtess, 60, 20);
gctl::set_geomag_angles(mtess, inclina, declina);
gctl::array sus(1, 0.08);
gctl::array data_x, data_y, data_z, deltaT;
magobser(data_z, tesses, obes, sus, gctl::Za, 4, gctl::ShortMsg);
gctl::save_netcdf_grid("data/tesseroid_mag", data_z, 101, 101, 20.0, 0.1, 10.0, 0.1, "x", "y", "Za");
magobser(data_x, tesses, obes, sus, gctl::Hax, 4, gctl::ShortMsg);
gctl::append_netcdf_grid("data/tesseroid_mag", data_x, "x", "y", "Hax");
magobser(data_y, tesses, obes, sus, gctl::Hay, 4, gctl::ShortMsg);
gctl::append_netcdf_grid("data/tesseroid_mag", data_y, "x", "y", "Hay");
magobser(deltaT, tesses, obes, sus, gctl::DeltaT, 4, gctl::ShortMsg);
gctl::append_netcdf_grid("data/tesseroid_mag", deltaT, "x", "y", "DeltaT");
gctl::array obsgrad(obes.size());
gctl::_1d_array obs_inclina(obes.size(), 60.0), obs_declina(obes.size(), 20.0);
for (size_t i = 0; i < obsgrad.size(); i++)
{
obsgrad[i].x = data_z[i];
obsgrad[i].y = data_x[i];
obsgrad[i].z = data_y[i];
}
magnetic_components2deltaT_sph(obsgrad, obs_inclina, obs_declina, deltaT);
gctl::append_netcdf_grid("data/tesseroid_mag", deltaT, "x", "y", "DeltaT2");
return 0;
}
catch (std::exception &e)
{
GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, 0, 0);
}