/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "gkernel_tricone.h" #include "cmath" using namespace gctl::geometry3d; /* void gctl::grav_tri_cone_gji::initialize_tensors() { point3dc v1, v2, v3, nf, ne; point3dc faceVec, faceVec_rj; point3dc edgeVec_j2, edgeVec_j2_rj; point3dc edgeVec_23, edgeVec_23_rj; point3dc edgeVec_3j, edgeVec_3j_rj; point3dc edgeVec_2j, edgeVec_2j_rj; point3dc edgeVec_j3, edgeVec_j3_rj; point3dc rjNor; if (vert[0] == nullptr || vert[1] == nullptr || vert[2] == nullptr || vert[3] == nullptr) { std::string err_str = "Null pointer found. From void gctl::grav_triangle::initialize_tensors()"; throw runtime_error(err_str); } for (int i = 0; i < 4; i++) { v1 = *vert[cone_order[1+i*3]] - *vert[cone_order[i*3]]; v2 = *vert[cone_order[2+i*3]] - *vert[cone_order[i*3]]; nf = cross(v1, v2).normal(); nface[i] = nf; F[i] = kron(nf, nf); for (int j = 0; j < 3; j++) { edglen[j+i*3] = distance(*vert[cone_order[j+i*3]], *vert[cone_order[(j+1)%3+i*3]]); v3 = *vert[cone_order[(j+1)%3+i*3]] - *vert[cone_order[j+i*3]]; ne = cross(v3, nf).normal(); nedge[j+i*3] = ne; E[j+i*3] = kron(nf, ne); } } for (int e = 0; e < 3; e++) { // 半径的单位矢量 rjNor = (*vert[e] - *vert[3]).normal(); //计算顶面的情况 faceVec = cross(*vert[(e+1)%3] - *vert[e], *vert[(e+2)%3] - *vert[e]); faceVec_rj = cross(rjNor, *vert[(e+1)%3] - *vert[(e+2)%3]); nf_rj[e] = nr_dr(faceVec, faceVec_rj); edgeVec_j2 = cross(*vert[(e+1)%3] - *vert[e], faceVec); edgeVec_j2_rj = cross(*vert[(e+1)%3] - *vert[e], faceVec_rj) - cross(rjNor, faceVec); nj2_rj[e] = nr_dr(edgeVec_j2, edgeVec_j2_rj); edgeVec_23 = cross(*vert[(e+2)%3] - *vert[(e+1)%3], faceVec); edgeVec_23_rj = cross(*vert[(e+2)%3] - *vert[(e+1)%3], faceVec_rj); n23_rj[e] = nr_dr(edgeVec_23, edgeVec_23_rj); edgeVec_3j = cross(*vert[e] - *vert[(e+2)%3], faceVec); edgeVec_3j_rj = cross(*vert[e] - *vert[(e+2)%3], faceVec_rj) + cross(rjNor, faceVec); n3j_rj[e] = nr_dr(edgeVec_3j, edgeVec_3j_rj); //计算右侧面的情况 faceVec = cross(*vert[(e+1)%3], *vert[e]); faceVec_rj = cross(*vert[(e+1)%3], rjNor); edgeVec_2j = cross(*vert[e] - *vert[(e+1)%3], faceVec); edgeVec_2j_rj = cross(rjNor, faceVec); n2j_rj[e] = nr_dr(edgeVec_2j, edgeVec_2j_rj); //计算左侧面的情况 faceVec = cross(*vert[e], *vert[(e+2)%3]); faceVec_rj = cross(rjNor, *vert[(e+2)%3]); edgeVec_j3 = cross(*vert[(e+2)%3] - *vert[e], faceVec); edgeVec_j3_rj = cross(faceVec, rjNor); nj3_rj[e] = nr_dr(edgeVec_j3, edgeVec_j3_rj); } return; } */ void gctl::callink_gravity_para(array &in_cone, array &out_para) { point3dc v1, v2, v3, ne, nf; point3dc faceVec, faceVec_rj; point3dc edgeVec_j2, edgeVec_j2_rj; point3dc edgeVec_23, edgeVec_23_rj; point3dc edgeVec_3j, edgeVec_3j_rj; point3dc edgeVec_2j, edgeVec_2j_rj; point3dc edgeVec_j3, edgeVec_j3_rj; point3dc rjNor; out_para.resize(in_cone.size()); for (int i = 0; i < in_cone.size(); ++i) { if (in_cone[i].vert[0] == nullptr || in_cone[i].vert[1] == nullptr || in_cone[i].vert[2] == nullptr || in_cone[i].vert[3] == nullptr) { throw runtime_error("Invalid vertex pointer. From callink_gravity_para(...)"); } for (int f = 0; f < 4; ++f) { v1 = *in_cone[i].fget(f, 1) - *in_cone[i].fget(f, 0); v2 = *in_cone[i].fget(f, 2) - *in_cone[i].fget(f, 0); nf = cross(v1, v2).normal(); out_para[i].nface[f] = nf; out_para[i].F[f] = kron(nf, nf); for (int e = 0; e < 3; ++e) { v3 = *in_cone[i].fget(f, (e+1)%3) - *in_cone[i].fget(f, e); out_para[i].edglen[e+f*3] = v3.module(); ne = cross(v3, nf).normal(); out_para[i].nedge[e+f*3] = ne; out_para[i].E[e+f*3] = kron(nf, ne); } for (int e = 0; e < 3; ++e) { // 半径的单位矢量 rjNor = (*in_cone[i].vert[e] - *in_cone[i].vert[3]).normal(); //计算顶面的情况 faceVec = cross(*in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[e], *in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[e]); faceVec_rj = cross(rjNor, *in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[(e+2)%3]); out_para[i].nf_rj[e] = nr_dr(faceVec, faceVec_rj); edgeVec_j2 = cross(*in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[e], faceVec); edgeVec_j2_rj = cross(*in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[e], faceVec_rj) - cross(rjNor, faceVec); out_para[i].nj2_rj[e] = nr_dr(edgeVec_j2, edgeVec_j2_rj); edgeVec_23 = cross(*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[(e+1)%3], faceVec); edgeVec_23_rj = cross(*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[(e+1)%3], faceVec_rj); out_para[i].n23_rj[e] = nr_dr(edgeVec_23, edgeVec_23_rj); edgeVec_3j = cross(*in_cone[i].vert[e] - *in_cone[i].vert[(e+2)%3], faceVec); edgeVec_3j_rj = cross(*in_cone[i].vert[e] - *in_cone[i].vert[(e+2)%3], faceVec_rj) + cross(rjNor, faceVec); out_para[i].n3j_rj[e] = nr_dr(edgeVec_3j, edgeVec_3j_rj); //计算右侧面的情况 faceVec = cross(*in_cone[i].vert[(e+1)%3], *in_cone[i].vert[e]); faceVec_rj = cross(*in_cone[i].vert[(e+1)%3], rjNor); edgeVec_2j = cross(*in_cone[i].vert[e] - *in_cone[i].vert[(e+1)%3], faceVec); edgeVec_2j_rj = cross(rjNor, faceVec); out_para[i].n2j_rj[e] = nr_dr(edgeVec_2j, edgeVec_2j_rj); //计算左侧面的情况 faceVec = cross(*in_cone[i].vert[e], *in_cone[i].vert[(e+2)%3]); faceVec_rj = cross(rjNor, *in_cone[i].vert[(e+2)%3]); edgeVec_j3 = cross(*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[e], faceVec); edgeVec_j3_rj = cross(faceVec, rjNor); out_para[i].nj3_rj[e] = nr_dr(edgeVec_j3, edgeVec_j3_rj); } } in_cone[i].att = out_para.get(i); } return; } typedef void (*gobser_mGrad_tricone)(gctl::array &out_mGrad, const gctl::array > &vert_neighList, const gctl::array &obs_diff, const gctl::array &ops, const gctl::array &rho, const gctl::array *verts_ptr, double ang_limit, gctl::verbose_type_e verbose); void gobser_mGrad_tricone_vr(gctl::array &out_mGrad, const gctl::array > &vert_neighList, const gctl::array &obs_diff, const gctl::array &ops, const gctl::array &rho, const gctl::array *verts_ptr, double ang_limit, gctl::verbose_type_e verbose); void gobser_mGrad_tricone_vrp(gctl::array &out_mGrad, const gctl::array > &vert_neighList, const gctl::array &obs_diff, const gctl::array &ops, const gctl::array &rho, const gctl::array *verts_ptr, double ang_limit, gctl::verbose_type_e verbose); void gobser_mGrad_tricone_vrt(gctl::array &out_mGrad, const gctl::array > &vert_neighList, const gctl::array &obs_diff, const gctl::array &ops, const gctl::array &rho, const gctl::array *verts_ptr, double ang_limit, gctl::verbose_type_e verbose); void gobser_mGrad_tricone_vrr(gctl::array &out_mGrad, const gctl::array > &vert_neighList, const gctl::array &obs_diff, const gctl::array &ops, const gctl::array &rho, const gctl::array *verts_ptr, double ang_limit, gctl::verbose_type_e verbose); void gctl::gobser_model_gradient(array &out_mGrad, const array > &vert_neighList, const array &obs_diff, const array &ops, const array &rho, const array *verts_ptr, double ang_limit, gravitational_field_type_e comp_id, verbose_type_e verbose) { gobser_mGrad_tricone gobser_mGrad; switch (comp_id) { case Vz: gobser_mGrad = gobser_mGrad_tricone_vr; break; case Tzx: gobser_mGrad = gobser_mGrad_tricone_vrp; break; case Tzy: gobser_mGrad = gobser_mGrad_tricone_vrt; break; case Tzz: gobser_mGrad = gobser_mGrad_tricone_vrr; break; default: gobser_mGrad = gobser_mGrad_tricone_vr; break; } return gobser_mGrad(out_mGrad, vert_neighList, obs_diff, ops, rho, verts_ptr, ang_limit, verbose); } double gobser_mGrad_tricone_vr_sig(const std::vector &a_list, int vert_id, const gctl::point3ds &a_op, const gctl::array &rho); double gobser_mGrad_tricone_vrp_sig(const std::vector &a_list, int vert_id, const gctl::point3ds &a_op, const gctl::array &rho); double gobser_mGrad_tricone_vrt_sig(const std::vector &a_list, int vert_id, const gctl::point3ds &a_op, const gctl::array &rho); double gobser_mGrad_tricone_vrr_sig(const std::vector &a_list, int vert_id, const gctl::point3ds &a_op, const gctl::array &rho); typedef void (*gobser_tri_cone_gji)(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_gji_pot(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_gji_vr(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_gji_vrp(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_gji_vrt(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_gji_vrr(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gctl::gobser(array &out_obs, const array &ele, const array &ops, const array &rho, gravitational_field_type_e comp_id, verbose_type_e verbose) { gobser_tri_cone_gji tricone_obser; switch (comp_id) { case GravPot: tricone_obser = gobser_tricone_gji_pot; case Vz: tricone_obser = gobser_tricone_gji_vr; break; case Tzx: tricone_obser = gobser_tricone_gji_vrp; break; case Tzy: tricone_obser = gobser_tricone_gji_vrt; break; case Tzz: tricone_obser = gobser_tricone_gji_vrr; break; default: tricone_obser = gobser_tricone_gji_vr; break; } return tricone_obser(out_obs, ele, ops, rho, verbose); } double gkernel_tricone_gji_pot_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op); double gkernel_tricone_gji_vr_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op); double gkernel_tricone_gji_vrp_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op); double gkernel_tricone_gji_vrt_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op); double gkernel_tricone_gji_vrr_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op); // 以下是具体的实现 void gobser_mGrad_tricone_vr(gctl::array &out_mGrad, const gctl::array > &vert_neighList, const gctl::array &obs_diff, const gctl::array &ops, const gctl::array &rho, const gctl::array *verts_ptr, double ang_limit, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int v_size = vert_neighList.size(); out_mGrad.resize(v_size, 0.0); gctl::progress_bar bar(o_size, "gobser_mGrad_vr"); if (verts_ptr != nullptr && ang_limit > 0.0) { for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < v_size; j++) { if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0) out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vr_sig(vert_neighList[j], j, ops[i], rho); } } } else { for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < v_size; j++) { out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vr_sig(vert_neighList[j], j, ops[i], rho); } } } return; } void gobser_mGrad_tricone_vrp(gctl::array &out_mGrad, const gctl::array > &vert_neighList, const gctl::array &obs_diff, const gctl::array &ops, const gctl::array &rho, const gctl::array *verts_ptr, double ang_limit, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int v_size = vert_neighList.size(); out_mGrad.resize(v_size, 0.0); gctl::progress_bar bar(o_size, "gobser_mGrad_vrp"); if (verts_ptr != nullptr && ang_limit > 0.0) { for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < v_size; j++) { if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0) out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrp_sig(vert_neighList[j], j, ops[i], rho); } } } else { for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < v_size; j++) { out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrp_sig(vert_neighList[j], j, ops[i], rho); } } } return; } void gobser_mGrad_tricone_vrt(gctl::array &out_mGrad, const gctl::array > &vert_neighList, const gctl::array &obs_diff, const gctl::array &ops, const gctl::array &rho, const gctl::array *verts_ptr, double ang_limit, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int v_size = vert_neighList.size(); out_mGrad.resize(v_size, 0.0); gctl::progress_bar bar(o_size, "gobser_mGrad_vrt"); if (verts_ptr != nullptr && ang_limit > 0.0) { for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < v_size; j++) { if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0) out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrt_sig(vert_neighList[j], j, ops[i], rho); } } } else { for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < v_size; j++) { out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrt_sig(vert_neighList[j], j, ops[i], rho); } } } return; } void gobser_mGrad_tricone_vrr(gctl::array &out_mGrad, const gctl::array > &vert_neighList, const gctl::array &obs_diff, const gctl::array &ops, const gctl::array &rho, const gctl::array *verts_ptr, double ang_limit, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int v_size = vert_neighList.size(); out_mGrad.resize(v_size, 0.0); gctl::progress_bar bar(o_size, "gobser_mGrad_vrr"); if (verts_ptr != nullptr && ang_limit > 0.0) { for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < v_size; j++) { if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0) out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrr_sig(vert_neighList[j], j, ops[i], rho); } } } else { for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < v_size; j++) { out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrr_sig(vert_neighList[j], j, ops[i], rho); } } } return; } void gobser_tricone_gji_pot(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_pot"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs.at(i) += gkernel_tricone_gji_pot_sig(ele[j], ops[i]) * rho[j]; } } return; } void gobser_tricone_gji_vr(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_vr"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs.at(i) += gkernel_tricone_gji_vr_sig(ele[j], ops[i]) * rho[j]; } } return; } void gobser_tricone_gji_vrp(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_vrp"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs.at(i) += gkernel_tricone_gji_vrp_sig(ele[j], ops[i]) * rho[j]; } } return; } void gobser_tricone_gji_vrt(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_vrt"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs.at(i) += gkernel_tricone_gji_vrt_sig(ele[j], ops[i]) * rho[j]; } } return; } void gobser_tricone_gji_vrr(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_vrr"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs.at(i) += gkernel_tricone_gji_vrr_sig(ele[j], ops[i]) * rho[j]; } } return; } double gobser_mGrad_tricone_vr_sig(const std::vector &a_list, int vert_id, const gctl::point3ds &a_op, const gctl::array &rho) { int local_id; double beta, beta_rj, alpha, alpha_rj; double a_rj, e_rj, Le_rj, Le; double wf, wf_rj; double L_j23; double L_ijk[3]; gctl::point3dc op_c; gctl::point3dc r_j23[3]; gctl::point3dc r_j23_side[3]; gctl::point3dc r_ijk[3]; gctl::point3dc R; gctl::point3dc face_temp, edge_temp; gctl::point3dc re; gctl::grav_tri_cone_gji* curr_tri; gctl::gravcone_para_gji* gp; R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi); op_c = a_op.s2c(); double point_sum = 0.0; for (int j = 0; j < a_list.size(); j++) { curr_tri = a_list.at(j); gp = curr_tri->att; // 找到顶点在某个三棱锥中的局部排序 for (int t = 0; t < 3; t++) { if (vert_id == curr_tri->vert[t]->id) { local_id = t; break; } } //先处理顶面 r_j23[0] = *curr_tri->vert[local_id]; r_j23[1] = *curr_tri->vert[(local_id+1)%3]; r_j23[2] = *curr_tri->vert[(local_id+2)%3]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0] r_ijk[1] = r_j23[1] - op_c; r_ijk[2] = r_j23[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0], cross(r_ijk[1], r_ijk[2])); beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1], r_ijk[2]) + L_ijk[1]*dot(r_ijk[2], r_ijk[0]) + L_ijk[2]*dot(r_ijk[0], r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1], r_ijk[2]))*dot(r_j23[0], r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1], r_j23[0])/L_j23; wf = 2*atan2(beta, alpha); wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //计算面与边的乘积 face_temp = (wf*dot(gp->nface[0], r_ijk[0])*gp->nf_rj[local_id] + wf*dot(gp->nf_rj[local_id], r_ijk[0])*gp->nface[0] + wf*dot(gp->nface[0], r_j23[0].normal())*gp->nface[0] + wf_rj*dot(gp->nface[0], r_ijk[0])*gp->nface[0]); //观测点到右侧边 re = r_j23[0] - op_c; //计算a_rj,e_rj a_rj = dot(r_j23[0], r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23[0], r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23); Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/ (L_ijk[0]+L_ijk[1]-gp->edglen[local_id])); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]); edge_temp = (Le*dot(gp->nedge[local_id], re)*gp->nf_rj[local_id] + Le*dot(gp->nj2_rj[local_id], re)*gp->nface[0] + Le*dot(gp->nedge[local_id], r_j23[0].normal())*gp->nface[0] + Le_rj*dot(gp->nedge[local_id], re)*gp->nface[0] + Le*dot(gp->n2j_rj[local_id], re)*gp->nface[local_id+1] + Le*dot(gp->nedge[local_id*3+5], r_j23[0].normal())*gp->nface[local_id+1] + Le_rj*dot(gp->nedge[local_id*3+5], re)*gp->nface[local_id+1]); //观测点到左侧边 //计算a_rj,e_rj a_rj = dot(r_j23[0], r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23[0], r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23); Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/ (L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3])); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]); edge_temp = edge_temp + (Le*dot(gp->nedge[(local_id+2)%3], re)*gp->nf_rj[local_id] + Le*dot(gp->n3j_rj[local_id], re)*gp->nface[0] + Le*dot(gp->nedge[(local_id+2)%3], r_j23[0].normal())*gp->nface[0] + Le_rj*dot(gp->nedge[(local_id+2)%3], re)*gp->nface[0] + Le*dot(gp->nj3_rj[local_id], re)*gp->nface[(local_id+2)%3+1] + Le*dot(gp->nedge[((local_id+2)%3)*3+5], r_j23[0].normal())*gp->nface[(local_id+2)%3+1] + Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5], re)*gp->nface[(local_id+2)%3+1]); //观测点到后侧 re = 0.5*(r_j23[1] + r_j23[2]) - op_c; Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/ (L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3])); edge_temp = edge_temp + (Le*dot(gp->nedge[(local_id+1)%3], re)*gp->nf_rj[local_id] + Le*dot(gp->n23_rj[local_id], re)*gp->nface[0]); //转换r_j23为顶点右边侧面的情况******************************************* r_j23_side[0] = r_j23[0]; r_j23_side[1] = *curr_tri->vert[3]; r_j23_side[2] = r_j23[1]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf r_ijk[1] = r_j23_side[1] - op_c; r_ijk[2] = r_j23_side[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23_side[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0], cross(r_ijk[1], r_ijk[2])); beta_rj = dot(r_j23_side[0], cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1], r_ijk[2]) + L_ijk[1]*dot(r_ijk[2], r_ijk[0]) + L_ijk[2]*dot(r_ijk[0], r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1], r_ijk[2]))*dot(r_j23_side[0], r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23; wf = 2*atan2(beta, alpha); wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //累加face_temp face_temp = face_temp + (wf*dot(gp->nface[local_id+1], r_j23_side[0])*gp->nface[local_id+1] + wf_rj*dot(gp->nface[local_id+1], r_ijk[0])*gp->nface[local_id+1]); //侧棱 re = r_j23_side[0] - op_c; //计算a_rj,e_rj a_rj = dot(r_j23_side[0], r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23_side[0], r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23);; Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3])/ (L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3])); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]); edge_temp = edge_temp + (Le*dot(gp->nedge[(local_id+1)*3], r_j23_side[0])*gp->nface[local_id+1] + Le_rj*dot(gp->nedge[(local_id+1)*3], re)*gp->nface[local_id+1] + Le*dot(gp->nedge[3*((local_id+2)%3+1)+1], r_j23_side[0])*gp->nface[(local_id+2)%3+1] + Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1], re)*gp->nface[(local_id+2)%3+1]); //转换r_j23为顶点左边侧面的情况******************************************* r_j23_side[0] = r_j23[0]; r_j23_side[1] = r_j23[2]; r_j23_side[2] = *curr_tri->vert[3]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf r_ijk[1] = r_j23_side[1] - op_c; r_ijk[2] = r_j23_side[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23_side[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23_side[0], cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23; wf = 2*atan2(beta, alpha); wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //累加face_temp face_temp = face_temp + (wf*dot(gp->nface[(local_id+2)%3+1], r_j23_side[0])*gp->nface[(local_id+2)%3+1] + wf_rj*dot(gp->nface[(local_id+2)%3+1], r_ijk[0])*gp->nface[(local_id+2)%3+1]); point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(edge_temp, R) - dot(face_temp, R)); } return point_sum; } double gobser_mGrad_tricone_vrp_sig(const std::vector &a_list, int vert_id, const gctl::point3ds &a_op, const gctl::array &rho) { int local_id; double beta, beta_rj, alpha, alpha_rj; double a_rj, e_rj, Le_rj, Le; double wf, wf_rj; double L_j23; double L_ijk[3]; gctl::point3dc op_c; gctl::point3dc r_j23[3]; gctl::point3dc r_j23_side[3]; gctl::point3dc r_ijk[3]; gctl::point3dc R, R_1st; gctl::point3dc face_temp, edge_temp; gctl::grav_tri_cone_gji* curr_tri; gctl::gravcone_para_gji* gp; R_1st.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R_1st.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R_1st.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R.x = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R.y = cos((2.0+a_op.lon/180.0)*GCTL_Pi); R.z = 0.0; op_c = a_op.s2c(); double point_sum = 0.0; for (int j = 0; j < a_list.size(); j++) { curr_tri = a_list.at(j); gp = curr_tri->att; // 找到顶点在某个三棱锥中的局部排序 for (int t = 0; t < 3; t++) { if (vert_id == curr_tri->vert[t]->id) { local_id = t; break; } } //先处理顶面 r_j23[0] = *curr_tri->vert[local_id]; r_j23[1] = *curr_tri->vert[(local_id+1)%3]; r_j23[2] = *curr_tri->vert[(local_id+2)%3]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0] r_ijk[1] = r_j23[1] - op_c; r_ijk[2] = r_j23[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23[0])/L_j23; wf = 2*atan2(beta, alpha); wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //计算面与边的乘积 face_temp = (wf*dot(gp->nface[0], R_1st)*gp->nf_rj[local_id] + wf*dot(gp->nf_rj[local_id], R_1st)*gp->nface[0] + wf_rj*dot(gp->nface[0], R_1st)*gp->nface[0]); //观测点到右侧边 //计算a_rj,e_rj a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23[0],r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23); Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/ (L_ijk[0]+L_ijk[1]-gp->edglen[local_id])); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]); edge_temp = (Le*dot(gp->nedge[local_id],R_1st)*gp->nf_rj[local_id] + Le*dot(gp->nj2_rj[local_id],R_1st)*gp->nface[0] + Le_rj*dot(gp->nedge[local_id],R_1st)*gp->nface[0] + Le*dot(gp->n2j_rj[local_id],R_1st)*gp->nface[local_id+1] + Le_rj*dot(gp->nedge[local_id*3+5],R_1st)*gp->nface[local_id+1]); //观测点到左侧边 //计算a_rj,e_rj a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23[0],r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23); Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/ (L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3])); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]); edge_temp = edge_temp + (Le*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nf_rj[local_id] + Le*dot(gp->n3j_rj[local_id],R_1st)*gp->nface[0] + Le_rj*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nface[0] + Le*dot(gp->nj3_rj[local_id],R_1st)*gp->nface[(local_id+2)%3+1] + Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5],R_1st)*gp->nface[(local_id+2)%3+1]); //观测点到背侧 Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/ (L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3])); edge_temp = edge_temp + (Le*dot(gp->nedge[(local_id+1)%3],R_1st)*gp->nf_rj[local_id] + Le*dot(gp->n23_rj[local_id],R_1st)*gp->nface[0]); //转换r_j23为顶点右边侧面的情况******************************************* r_j23_side[0] = r_j23[0]; r_j23_side[1] = *curr_tri->vert[3]; r_j23_side[2] = r_j23[1]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf r_ijk[1] = r_j23_side[1] - op_c; r_ijk[2] = r_j23_side[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23_side[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23; wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //累加face_temp face_temp = face_temp + wf_rj*dot(gp->nface[local_id+1],R_1st)*gp->nface[local_id+1]; //侧棱 //计算a_rj,e_rj a_rj = dot(r_j23_side[0],r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23_side[0],r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]); edge_temp = edge_temp + (Le_rj*dot(gp->nedge[(local_id+1)*3],R_1st)*gp->nface[local_id+1] + Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1],R_1st)*gp->nface[(local_id+2)%3+1]); //转换r_j23为顶点左边侧面的情况******************************************* r_j23_side[0] = r_j23[0]; r_j23_side[1] = r_j23[2]; r_j23_side[2] = *curr_tri->vert[3]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf r_ijk[1] = r_j23_side[1] - op_c; r_ijk[2] = r_j23_side[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23_side[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23; wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //累加face_temp face_temp = face_temp + wf_rj*dot(gp->nface[(local_id+2)%3+1],R_1st)*gp->nface[(local_id+2)%3+1]; point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(face_temp, R) - dot(edge_temp, R)); } return point_sum; } double gobser_mGrad_tricone_vrt_sig(const std::vector &a_list, int vert_id, const gctl::point3ds &a_op, const gctl::array &rho) { int local_id; double beta, beta_rj, alpha, alpha_rj; double a_rj, e_rj, Le_rj, Le; double wf, wf_rj; double L_j23; double L_ijk[3]; gctl::point3dc op_c; gctl::point3dc r_j23[3]; gctl::point3dc r_j23_side[3]; gctl::point3dc r_ijk[3]; gctl::point3dc R, R_1st; gctl::point3dc face_temp, edge_temp; gctl::grav_tri_cone_gji* curr_tri; gctl::gravcone_para_gji* gp; R_1st.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R_1st.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R_1st.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R.x = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R.y = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R.z = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi); op_c = a_op.s2c(); double point_sum = 0.0; for (int j = 0; j < a_list.size(); j++) { curr_tri = a_list.at(j); gp = curr_tri->att; // 找到顶点在某个三棱锥中的局部排序 for (int t = 0; t < 3; t++) { if (vert_id == curr_tri->vert[t]->id) { local_id = t; break; } } //先处理顶面 r_j23[0] = *curr_tri->vert[local_id]; r_j23[1] = *curr_tri->vert[(local_id+1)%3]; r_j23[2] = *curr_tri->vert[(local_id+2)%3]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0] r_ijk[1] = r_j23[1] - op_c; r_ijk[2] = r_j23[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23[0])/L_j23; wf = 2*atan2(beta, alpha); wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //计算面与边的乘积 face_temp = (wf*dot(gp->nface[0], R_1st)*gp->nf_rj[local_id] + wf*dot(gp->nf_rj[local_id], R_1st)*gp->nface[0] + wf_rj*dot(gp->nface[0], R_1st)*gp->nface[0]); //观测点到右侧边 //计算a_rj,e_rj a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23[0],r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23); Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/ (L_ijk[0]+L_ijk[1]-gp->edglen[local_id])); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]); edge_temp = (Le*dot(gp->nedge[local_id],R_1st)*gp->nf_rj[local_id] + Le*dot(gp->nj2_rj[local_id],R_1st)*gp->nface[0] + Le_rj*dot(gp->nedge[local_id],R_1st)*gp->nface[0] + Le*dot(gp->n2j_rj[local_id],R_1st)*gp->nface[local_id+1] + Le_rj*dot(gp->nedge[local_id*3+5],R_1st)*gp->nface[local_id+1]); //观测点到左侧边 //计算a_rj,e_rj a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23[0],r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23); Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/ (L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3])); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]); edge_temp = edge_temp + (Le*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nf_rj[local_id] + Le*dot(gp->n3j_rj[local_id],R_1st)*gp->nface[0] + Le_rj*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nface[0] + Le*dot(gp->nj3_rj[local_id],R_1st)*gp->nface[(local_id+2)%3+1] + Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5],R_1st)*gp->nface[(local_id+2)%3+1]); //观测点到背侧 Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/ (L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3])); edge_temp = edge_temp + (Le*dot(gp->nedge[(local_id+1)%3],R_1st)*gp->nf_rj[local_id] + Le*dot(gp->n23_rj[local_id],R_1st)*gp->nface[0]); //转换r_j23为顶点右边侧面的情况 r_j23_side[0] = r_j23[0]; r_j23_side[1] = *curr_tri->vert[3]; r_j23_side[2] = r_j23[1]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf r_ijk[1] = r_j23_side[1] - op_c; r_ijk[2] = r_j23_side[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23_side[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23; wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //累加face_temp face_temp = face_temp + wf_rj*dot(gp->nface[local_id+1],R_1st)*gp->nface[local_id+1]; //侧棱 //计算a_rj,e_rj a_rj = dot(r_j23_side[0],r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23_side[0],r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]); edge_temp = edge_temp + (Le_rj*dot(gp->nedge[(local_id+1)*3],R_1st)*gp->nface[local_id+1] + Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1],R_1st)*gp->nface[(local_id+2)%3+1]); //转换r_j23为顶点左边侧面的情况 r_j23_side[0] = r_j23[0]; r_j23_side[1] = r_j23[2]; r_j23_side[2] = *curr_tri->vert[3]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf r_ijk[1] = r_j23_side[1] - op_c; r_ijk[2] = r_j23_side[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23_side[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23; wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //累加face_temp face_temp = face_temp + wf_rj*dot(gp->nface[(local_id+2)%3+1],R_1st)*gp->nface[(local_id+2)%3+1]; point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(face_temp, R) - dot(edge_temp, R)); } return point_sum; } double gobser_mGrad_tricone_vrr_sig(const std::vector &a_list, int vert_id, const gctl::point3ds &a_op, const gctl::array &rho) { int local_id; double beta, beta_rj, alpha, alpha_rj; double a_rj, e_rj, Le_rj, Le; double wf, wf_rj; double L_j23; double L_ijk[3]; gctl::point3dc op_c; gctl::point3dc r_j23[3]; gctl::point3dc r_j23_side[3]; gctl::point3dc r_ijk[3]; gctl::point3dc R; gctl::point3dc face_temp, edge_temp; gctl::grav_tri_cone_gji* curr_tri; gctl::gravcone_para_gji* gp; R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi); op_c = a_op.s2c(); double point_sum = 0.0; for (int j = 0; j < a_list.size(); j++) { curr_tri = a_list.at(j); gp = curr_tri->att; // 找到顶点在某个三棱锥中的局部排序 for (int t = 0; t < 3; t++) { if (vert_id == curr_tri->vert[t]->id) { local_id = t; break; } } //先处理顶面 r_j23[0] = *curr_tri->vert[local_id]; r_j23[1] = *curr_tri->vert[(local_id+1)%3]; r_j23[2] = *curr_tri->vert[(local_id+2)%3]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0] r_ijk[1] = r_j23[1] - op_c; r_ijk[2] = r_j23[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23[0])/L_j23; wf = 2*atan2(beta, alpha); wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //计算面与边的乘积 face_temp = (wf*dot(gp->nface[0], R)*gp->nf_rj[local_id] + wf*dot(gp->nf_rj[local_id], R)*gp->nface[0] + wf_rj*dot(gp->nface[0], R)*gp->nface[0]); //观测点到右侧边 //计算a_rj,e_rj a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23[0],r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23); Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/ (L_ijk[0]+L_ijk[1]-gp->edglen[local_id])); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]); edge_temp = (Le*dot(gp->nedge[local_id],R)*gp->nf_rj[local_id] + Le*dot(gp->nj2_rj[local_id],R)*gp->nface[0] + Le_rj*dot(gp->nedge[local_id],R)*gp->nface[0] + Le*dot(gp->n2j_rj[local_id],R)*gp->nface[local_id+1] + Le_rj*dot(gp->nedge[local_id*3+5],R)*gp->nface[local_id+1]); //观测点到左侧边 //计算a_rj,e_rj a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23[0],r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23); Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/ (L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3])); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]); edge_temp = edge_temp + (Le*dot(gp->nedge[(local_id+2)%3],R)*gp->nf_rj[local_id] + Le*dot(gp->n3j_rj[local_id],R)*gp->nface[0] + Le_rj*dot(gp->nedge[(local_id+2)%3],R)*gp->nface[0] + Le*dot(gp->nj3_rj[local_id],R)*gp->nface[(local_id+2)%3+1] + Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5],R)*gp->nface[(local_id+2)%3+1]); //观测点到背侧 Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/ (L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3])); edge_temp = edge_temp + (Le*dot(gp->nedge[(local_id+1)%3],R)*gp->nf_rj[local_id] + Le*dot(gp->n23_rj[local_id],R)*gp->nface[0]); //转换r_j23为顶点右边侧面的情况 r_j23_side[0] = r_j23[0]; r_j23_side[1] = *curr_tri->vert[3]; r_j23_side[2] = r_j23[1]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf r_ijk[1] = r_j23_side[1] - op_c; r_ijk[2] = r_j23_side[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23_side[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23; wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //累加face_temp face_temp = face_temp + wf_rj*dot(gp->nface[local_id+1],R)*gp->nface[local_id+1]; //侧棱 //计算a_rj,e_rj a_rj = dot(r_j23_side[0],r_ijk[0])/(L_ijk[0]*L_j23); e_rj = dot(r_j23_side[0],r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23); Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) - (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]); edge_temp = edge_temp + (Le_rj*dot(gp->nedge[(local_id+1)*3],R)*gp->nface[local_id+1] + Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1],R)*gp->nface[(local_id+2)%3+1]); //转换r_j23为顶点左边侧面的情况 r_j23_side[0] = r_j23[0]; r_j23_side[1] = r_j23[2]; r_j23_side[2] = *curr_tri->vert[3]; //确定观测点到三个顶点的矢量 r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf r_ijk[1] = r_j23_side[1] - op_c; r_ijk[2] = r_j23_side[2] - op_c; //计算对应的矢量长度 L_j23 = r_j23_side[0].module(); L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); //计算wf和wf相对于rj的偏导数 beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])); beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23; alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]); alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) + dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23; wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta); //累加face_temp face_temp = face_temp + wf_rj*dot(gp->nface[(local_id+2)%3+1],R)*gp->nface[(local_id+2)%3+1]; point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(edge_temp, R) - dot(face_temp, R)); } return point_sum; } // 以下是具体的实现 double gkernel_tricone_gji_pot_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum, edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; gctl::point3dc re; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para_gji* gp = a_ele.att; op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp = gp->F[f] * r_ijk[0]; face_sum += dot(r_ijk[0],face_tmp)*wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); re = 0.5*(*a_ele.fget(f, e) + *a_ele.fget(f, (e+1)%3)) - op_c; Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp = gp->E[e+3*f] * re; edge_sum += dot(re, edge_tmp)*Le; } } return -0.5e+8*GCTL_G0*(face_sum - edge_sum); } double gkernel_tricone_gji_vr_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum, edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; // 注意这里R并不是一个直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc R; gctl::point3dc re; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para_gji* gp = a_ele.att; R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi); op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp = gp->F[f] * r_ijk[0]; face_sum += dot(R,face_tmp)*wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); re = 0.5*(*a_ele.fget(f, e) + *a_ele.fget(f, (e+1)%3)) - op_c; Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp = gp->E[e+3*f] * re; edge_sum += dot(R,edge_tmp)*Le; } } return -1.0e+8*GCTL_G0*(face_sum - edge_sum); } double gkernel_tricone_gji_vrp_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum,edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; // 这里我们需要完整的转换矩阵 gctl::tensor R; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para_gji* gp = a_ele.att; R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi); R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][2] = 0.0; op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2]; face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2]; face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2]; face_sum += (R[2][0]*face_tmp.x + R[2][1]*face_tmp.y + R[2][2]*face_tmp.z) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2]; edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2]; edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2]; edge_sum += (R[2][0]*edge_tmp.x + R[2][1]*edge_tmp.y + R[2][2]*edge_tmp.z) * Le; } } return 1.0e+8*GCTL_G0*(face_sum - edge_sum); } double gkernel_tricone_gji_vrt_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum,edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; // 这里我们需要完整的转换矩阵 gctl::tensor R; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para_gji* gp = a_ele.att; R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi); R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][2] = 0.0; op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2]; face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2]; face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2]; face_sum += (R[1][0]*face_tmp.x + R[1][1]*face_tmp.y + R[1][2]*face_tmp.z) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2]; edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2]; edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2]; edge_sum += (R[1][0]*edge_tmp.x + R[1][1]*edge_tmp.y + R[1][2]*edge_tmp.z) * Le; } } return 1.0e+8*GCTL_G0*(face_sum - edge_sum); } double gkernel_tricone_gji_vrr_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum,edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; // 这里我们需要完整的转换矩阵 gctl::tensor R; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para_gji* gp = a_ele.att; R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi); R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][2] = 0.0; op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2]; face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2]; face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2]; face_sum += (R[0][0]*face_tmp.x + R[0][1]*face_tmp.y + R[0][2]*face_tmp.z) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2]; edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2]; edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2]; edge_sum += (R[0][0]*edge_tmp.x + R[0][1]*edge_tmp.y + R[0][2]*edge_tmp.z) * Le; } } return -1.0e+8*GCTL_G0*(face_sum - edge_sum); }