/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "mkernel_tetrahedron.h" void gctl::callink_magnetic_para(array &in_tet, array &out_para, const array &mag_B) { point3dc v1, v2, v3, ne, nf, mag_z; out_para.resize(in_tet.size()); for (int i = 0; i < in_tet.size(); ++i) { if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr || in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr) { throw runtime_error("Invalid vertex pointer. From callink_magnetic_para(...)"); } // magnetic susceptibility is taken as one here out_para[i].B = mag_B[i]; for (int f = 0; f < 4; ++f) { v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0); v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0); nf = cross(v1, v2).normal(); out_para[i].F[f] = kron(nf, nf); for (int e = 0; e < 3; ++e) { v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e); out_para[i].edglen[e+f*3] = v3.module(); out_para[i].E[e+f*3] = kron(nf, cross(v3, nf).normal()); } } in_tet[i].att = out_para.get(i); } return; } void gctl::callink_magnetic_para_earth(array &in_tet, array &out_para, double inclina_deg, double declina_deg, double field_tense) { if (declina_deg < -180.0 || declina_deg > 180.0 || inclina_deg < -90 || inclina_deg > 90 || field_tense < 0.0) { throw invalid_argument("Invalid parameters. From gctl::callink_magnetic_para_earth(...)"); } point3dc v1, v2, v3, ne, nf, mag_z; double I = inclina_deg*GCTL_Pi/180.0; double A = (90 - declina_deg)*GCTL_Pi/180.0; out_para.resize(in_tet.size()); for (int i = 0; i < in_tet.size(); ++i) { if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr || in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr) { throw runtime_error("Invalid vertex pointer. From callink_magnetic_para_earth(...)"); } // magnetic susceptibility is taken as one here out_para[i].B.x = cos(I)*cos(A)*field_tense; out_para[i].B.y = cos(I)*sin(A)*field_tense; out_para[i].B.z = sin(I)*field_tense; for (int f = 0; f < 4; ++f) { v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0); v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0); nf = cross(v1, v2).normal(); out_para[i].F[f] = kron(nf, nf); for (int e = 0; e < 3; ++e) { v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e); out_para[i].edglen[e+f*3] = v3.module(); out_para[i].E[e+f*3] = kron(nf, cross(v3, nf).normal()); } } in_tet[i].att = out_para.get(i); } return; } void gctl::callink_magnetic_para_earth_sph(array &in_tet, array &out_para, double inclina_deg, double declina_deg, array *mag_vec, double field_tense) { if (declina_deg < -180.0 || declina_deg > 180.0 || inclina_deg < -90 || inclina_deg > 90 || field_tense < 0.0) { throw invalid_argument("Invalid parameters. From gctl::callink_magnetic_para_earth_sph(...)"); } point3dc v1, v2, v3, ne, nf, mag_z; point3ds s; double I = inclina_deg*GCTL_Pi/180.0; double A = declina_deg*GCTL_Pi/180.0; if (mag_vec != nullptr) mag_vec->resize(in_tet.size()); out_para.resize(in_tet.size()); for (int i = 0; i < in_tet.size(); ++i) { if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr || in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr) { throw runtime_error("Invalid vertex pointer. From callink_magnetic_para_earth_sph(...)"); } // magnetization vector at the local coordinates // note here the postive direction of the inclination angle is downward // note here the postive direction of the declination angle is clockwise mag_z.x = cos(I)*sin(A); mag_z.y = cos(I)*cos(A); mag_z.z = -1.0*sin(I); s = in_tet[i].center().c2s(); // magnetic susceptibility is taken as one here // rotate the local coordinate system to the regular status out_para[i].B = field_tense * mag_z.rotate((90.0 - s.lat)*GCTL_Pi/180.0, 0.0, (90.0 + s.lon)*GCTL_Pi/180.0).normal(); if (mag_vec != nullptr) mag_vec->at(i) = out_para[i].B; for (int f = 0; f < 4; ++f) { v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0); v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0); nf = cross(v1, v2).normal(); out_para[i].F[f] = kron(nf, nf); for (int e = 0; e < 3; ++e) { v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e); out_para[i].edglen[e+f*3] = v3.module(); out_para[i].E[e+f*3] = kron(nf, cross(v3, nf).normal()); } } in_tet[i].att = out_para.get(i); } return; } gctl::point3dc gctl::magkernel_single(const gctl::mag_tetrahedron &a_ele, const gctl::point3dc &a_op) { int f,e; double Le,wf; double dv1,dv2; gctl::point3dc r_ijk[3]; gctl::tensor face_sum(0.0); gctl::tensor edge_sum(0.0); double L_ijk[3]; gctl::magtet_para* gp = a_ele.att; int *v_order = a_ele.vec_order; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.vert[v_order[3*f]] - a_op; r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - a_op; r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - a_op; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_sum = face_sum + wf * gp->F[f]; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.vert[v_order[e+3*f]], a_op); dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], a_op); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_sum = edge_sum + Le * gp->E[e+3*f]; } } // 位场正演中通常z方向取垂直向下为正方向 // nT -> T 1e-9 / 4*pi*e-7 = 1/(400*pi)*100 = 1/(4*pi) -> A/m gctl::tensor gt = -1.0/(4.0*GCTL_Pi)*(face_sum - edge_sum); gctl::point3dc out_b = gt*gp->B; return out_b; } gctl::point3dc gctl::magkernel_single(const gctl::mag_tetrahedron &a_ele, const gctl::point3ds &a_op, tensor *R_ptr) { int f,e; double Le,wf; double dv1,dv2; gctl::point3dc r_ijk[3]; gctl::tensor R; gctl::tensor face_sum(0.0); gctl::tensor edge_sum(0.0); double L_ijk[3]; if (R_ptr != nullptr) R = *R_ptr; else R = transform_matrix(a_op); gctl::magtet_para* gp = a_ele.att; gctl::point3dc pc = a_op.s2c(); int *v_order = a_ele.vec_order; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.vert[v_order[3*f]] - pc; r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - pc; r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - pc; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf = 2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_sum = face_sum + wf * gp->F[f]; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.vert[v_order[e+3*f]], pc); dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], pc); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_sum = edge_sum + Le * gp->E[e+3*f]; } } // nT -> T 1e-9 / 4*pi*e-7 = 1/(400*pi)*100 = 1/(4*pi) -> A/m gctl::tensor gt = -1.0/(4.0*GCTL_Pi)*(face_sum - edge_sum); gctl::point3dc out_c = R*(gt*gp->B); out_c.x *= -1.0; return out_c; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, const array &sus, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); gctl::progress_bar bar(e_size, "magobser_componments"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + sus[j]*magkernel_single(ele[j], obsp[i]);; } } return; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, const array &sus, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); array Rs(o_size); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { Rs[i] = transform_matrix(obsp[i]); } gctl::progress_bar bar(e_size, "magobser_componments"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + sus[j] * magkernel_single(ele[j], obsp[i], Rs.get(i)); } } return; }