/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "gkernel_tricone.h" #include "cmath" using namespace gctl::geometry3d; void gctl::callink_gravity_para(array &in_cone, array &out_para) { point3dc v1, v2, v3, nf; out_para.resize(in_cone.size()); for (int i = 0; i < in_cone.size(); ++i) { if (in_cone[i].vert[0] == nullptr || in_cone[i].vert[1] == nullptr || in_cone[i].vert[2] == nullptr || in_cone[i].vert[3] == nullptr) { throw runtime_error("Invalid vertex pointer. From callink_gravity_para(...)"); } for (int f = 0; f < 4; ++f) { v1 = *in_cone[i].fget(f, 1) - *in_cone[i].fget(f, 0); v2 = *in_cone[i].fget(f, 2) - *in_cone[i].fget(f, 0); nf = cross(v1, v2).normal(); out_para[i].F[f] = kron(nf, nf); for (int e = 0; e < 3; ++e) { v3 = *in_cone[i].fget(f, (e+1)%3) - *in_cone[i].fget(f, e); out_para[i].edglen[e+f*3] = v3.module(); out_para[i].E[e+f*3] = kron(nf, cross(v3, nf).normal()); } } in_cone[i].att = out_para.get(i); } return; } typedef void (*gkernel_tri_cone)(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose); void gkernel_tricone_pot(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose); void gkernel_tricone_vr(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose); void gkernel_tricone_vrp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose); void gkernel_tricone_vrt(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose); void gkernel_tricone_vrr(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose); void gctl::gkernel(matrix &out_kernel, const array &ele, const array &ops, gravitational_field_type_e comp_id, verbose_type_e verbose) { gkernel_tri_cone tricone_kernel; switch (comp_id) { case GravPot: tricone_kernel = gkernel_tricone_pot; break; case Vz: tricone_kernel = gkernel_tricone_vr; break; case Tzx: tricone_kernel = gkernel_tricone_vrp; break; case Tzy: tricone_kernel = gkernel_tricone_vrt; break; case Tzz: tricone_kernel = gkernel_tricone_vrr; break; default: tricone_kernel = gkernel_tricone_vr; break; } return tricone_kernel(out_kernel, ele, ops, verbose); } typedef void (*gobser_tri_cone)(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_pot(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_vr(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_vrp(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_vrt(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gobser_tricone_vrr(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose); void gctl::gobser(array &out_obs, const array &ele, const array &ops, const array &rho, gravitational_field_type_e comp_id, verbose_type_e verbose) { gobser_tri_cone tricone_obser; switch (comp_id) { case GravPot: tricone_obser = gobser_tricone_pot; break; case Vz: tricone_obser = gobser_tricone_vr; break; case Tzx: tricone_obser = gobser_tricone_vrp; break; case Tzy: tricone_obser = gobser_tricone_vrt; break; case Tzz: tricone_obser = gobser_tricone_vrr; break; default: tricone_obser = gobser_tricone_vr; break; } return tricone_obser(out_obs, ele, ops, rho, verbose); } // 前置声明 gctl::point3dc gkernel_tricone_v_sig(const gctl::gravcone &a_ele, const gctl::point3dc &a_op); void gctl::gobser(array &out_obs, const array &ele, const array &obsp, const array &rho, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); gctl::progress_bar bar(e_size, "gobser_vecCartesian"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + gkernel_tricone_v_sig(ele[j], obsp[i]) * rho[j]; } } return ; } // 以下是具体的实现 double gkernel_tricone_pot_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op); double gkernel_tricone_vr_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op); double gkernel_tricone_vrp_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op); double gkernel_tricone_vrt_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op); double gkernel_tricone_vrr_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op); void gkernel_tricone_pot(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_pot"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private(j) shared(i) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tricone_pot_sig(ele[j], ops[i]); } } return; } void gkernel_tricone_vr(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vr"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private(j) shared(i) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tricone_vr_sig(ele[j], ops[i]); } } return; } void gkernel_tricone_vrp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vrp"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tricone_vrp_sig(ele[j], ops[i]); } } return; } void gkernel_tricone_vrt(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vrt"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tricone_vrt_sig(ele[j], ops[i]); } } return; } void gkernel_tricone_vrr(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &ops, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vrr"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) shared(i) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tricone_vrr_sig(ele[j], ops[i]); } } return; } void gobser_tricone_pot(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_pot"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] += gkernel_tricone_pot_sig(ele[j], ops[i]) * rho[j]; } } return; } void gobser_tricone_vr(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_vr"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] += gkernel_tricone_vr_sig(ele[j], ops[i]) * rho[j]; } } return; } void gobser_tricone_vrp(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_vrp"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] += gkernel_tricone_vrp_sig(ele[j], ops[i]) * rho[j]; } } return; } void gobser_tricone_vrt(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_vrt"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] += gkernel_tricone_vrt_sig(ele[j], ops[i]) * rho[j]; } } return; } void gobser_tricone_vrr(gctl::array &out_obs, const gctl::array &ele, const gctl::array &ops, const gctl::array &rho, gctl::verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_vrr"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) shared(j) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] += gkernel_tricone_vrr_sig(ele[j], ops[i]) * rho[j]; } } return; } // 以下是具体的实现 double gkernel_tricone_pot_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum, edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; gctl::point3dc re; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para* gp = a_ele.att; op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp = gp->F[f] * r_ijk[0]; face_sum += dot(r_ijk[0],face_tmp)*wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); re = 0.5*(*a_ele.fget(f, e) + *a_ele.fget(f, (e+1)%3)) - op_c; Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp = gp->E[e+3*f] * re; edge_sum += dot(re, edge_tmp)*Le; } } return -0.5*GCTL_G0*(face_sum - edge_sum); } gctl::point3dc gkernel_tricone_v_sig(const gctl::gravcone &a_ele, const gctl::point3dc &a_op) { int f,e; double Le,wf; double dv1,dv2; gctl::point3dc re; gctl::point3dc r_ijk[3]; gctl::point3dc face_sum(0.0, 0.0, 0.0); gctl::point3dc edge_sum(0.0, 0.0, 0.0); double L_ijk[3]; gctl::gravcone_para* gp = a_ele.att; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - a_op; r_ijk[1] = *a_ele.fget(f, 1) - a_op; r_ijk[2] = *a_ele.fget(f, 2) - a_op; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_sum = face_sum + wf*r_ijk[0]*gp->F[f]; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), a_op); dv2 = distance(*a_ele.fget(f, (e+1)%3), a_op); re = 0.5*(*a_ele.fget(f, e) + *a_ele.fget(f, (e+1)%3)) - a_op; Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_sum = edge_sum + Le*re*gp->E[e+3*f]; } } return GCTL_G0*(face_sum - edge_sum); } double gkernel_tricone_vr_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum, edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; // 注意这里R并不是一个直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc R; gctl::point3dc re; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para* gp = a_ele.att; R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi); op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp = gp->F[f] * r_ijk[0]; face_sum += dot(R,face_tmp)*wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); re = 0.5*(*a_ele.fget(f, e) + *a_ele.fget(f, (e+1)%3)) - op_c; Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp = gp->E[e+3*f] * re; edge_sum += dot(R,edge_tmp)*Le; } } return -1.0*GCTL_G0*(face_sum - edge_sum); } double gkernel_tricone_vrp_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum,edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; // 这里我们需要完整的转换矩阵 gctl::tensor R; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para* gp = a_ele.att; R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi); R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][2] = 0.0; op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2]; face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2]; face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2]; face_sum += (R[2][0]*face_tmp.x + R[2][1]*face_tmp.y + R[2][2]*face_tmp.z) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2]; edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2]; edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2]; edge_sum += (R[2][0]*edge_tmp.x + R[2][1]*edge_tmp.y + R[2][2]*edge_tmp.z) * Le; } } return 1.0*GCTL_G0*(face_sum - edge_sum); } double gkernel_tricone_vrt_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum,edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; // 这里我们需要完整的转换矩阵 gctl::tensor R; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para* gp = a_ele.att; R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi); R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][2] = 0.0; op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2]; face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2]; face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2]; face_sum += (R[1][0]*face_tmp.x + R[1][1]*face_tmp.y + R[1][2]*face_tmp.z) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2]; edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2]; edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2]; edge_sum += (R[1][0]*edge_tmp.x + R[1][1]*edge_tmp.y + R[1][2]*edge_tmp.z) * Le; } } return 1.0*GCTL_G0*(face_sum - edge_sum); } double gkernel_tricone_vrr_sig(const gctl::gravcone &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum,edge_sum; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; // 这里我们需要完整的转换矩阵 gctl::tensor R; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravcone_para* gp = a_ele.att; R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi); R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][2] = 0.0; op_c = a_op.s2c(); face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.fget(f, 0) - op_c; r_ijk[1] = *a_ele.fget(f, 1) - op_c; r_ijk[2] = *a_ele.fget(f, 2) - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2]; face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2]; face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2]; face_sum += (R[0][0]*face_tmp.x + R[0][1]*face_tmp.y + R[0][2]*face_tmp.z) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.fget(f, e), op_c); dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2]; edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2]; edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2]; edge_sum += (R[0][0]*edge_tmp.x + R[0][1]*edge_tmp.y + R[0][2]*edge_tmp.z) * Le; } } return -1.0*GCTL_G0*(face_sum - edge_sum); }