/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "mkernel_tetrahedron_Ren2017.h" #include "cmath" #define GCTL_MAG_TETRA_TOL 1e-16 void gctl::callink_magnetic_para_direct(array &in_tet, array &out_para, const array &magz) { point3dc v1, v2, v3, ne, nf; out_para.resize(in_tet.size()); for (int i = 0; i < in_tet.size(); ++i) { if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr || in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr) { throw runtime_error("Invalid vertex pointer. From callink_magnetic_para(...)"); } for (int f = 0; f < 4; ++f) { v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0); v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0); nf = cross(v1, v2).normal(); out_para[i].nf[f] = nf; for (int e = 0; e < 3; ++e) { v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e); ne = cross(v3, nf).normal(); out_para[i].ne[e+f*3] = ne; out_para[i].te[e+f*3] = cross(nf, ne).normal(); } out_para[i].mag_amp[f] = dot(magz[i], nf); } in_tet[i].att = out_para.get(i); } return; } void gctl::callink_magnetic_para_earth(array &in_tet, array &out_para, double inclina_deg, double declina_deg, double field_tense) { if (declina_deg < -180.0 || declina_deg > 180.0 || inclina_deg < -90 || inclina_deg > 90 || field_tense < 0.0) { throw invalid_argument("Invalid parameters. From gctl::callink_magnetic_para(...)"); } point3dc v1, v2, v3, ne, nf, mag_z; double I = inclina_deg*GCTL_Pi/180.0; double A = (90 - declina_deg)*GCTL_Pi/180.0; out_para.resize(in_tet.size()); for (int i = 0; i < in_tet.size(); ++i) { if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr || in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr) { throw runtime_error("Invalid vertex pointer. From callink_magnetic_para(...)"); } // magnetic susceptibility is taken as one here mag_z.x = cos(I)*cos(A)*field_tense; mag_z.y = cos(I)*sin(A)*field_tense; mag_z.z = sin(I)*field_tense; for (int f = 0; f < 4; ++f) { v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0); v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0); nf = cross(v1, v2).normal(); out_para[i].nf[f] = nf; for (int e = 0; e < 3; ++e) { v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e); ne = cross(v3, nf).normal(); out_para[i].ne[e+f*3] = ne; out_para[i].te[e+f*3] = cross(nf, ne).normal(); } out_para[i].mag_amp[f] = dot(mag_z, nf); } in_tet[i].att = out_para.get(i); } return; } void gctl::callink_magnetic_para_earth_sph(array &in_tet, array &out_para, double inclina_deg, double declina_deg, array *mag_vec, double field_tense) { if (declina_deg < -180.0 || declina_deg > 180.0 || inclina_deg < -90 || inclina_deg > 90 || field_tense < 0.0) { throw invalid_argument("Invalid parameters. From gctl::callink_magnetic_para_earth_sph(...)"); } point3dc v1, v2, v3, ne, nf, mag_z; point3ds s; double I = inclina_deg*M_PI/180.0; double A = declina_deg*M_PI/180.0; if (mag_vec != nullptr) mag_vec->resize(in_tet.size()); out_para.resize(in_tet.size()); for (int i = 0; i < in_tet.size(); ++i) { if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr || in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr) { throw runtime_error("Invalid vertex pointer. From callink_magnetic_para_earth_sph(...)"); } // magnetization vector at the local coordinates // note here the postive direction of the inclination angle is downward // note here the postive direction of the declination angle is clockwise mag_z.x = cos(I)*sin(A); mag_z.y = cos(I)*cos(A); mag_z.z = -1.0*sin(I); s = in_tet[i].center().c2s(); // magnetic susceptibility is taken as one here // rotate the local coordinate system to the regular status mag_z = field_tense * mag_z.rotate((90.0 - s.lat)*M_PI/180.0, 0.0, (90.0 + s.lon)*M_PI/180.0).normal(); if (mag_vec != nullptr) mag_vec->at(i) = mag_z; for (int f = 0; f < 4; ++f) { v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0); v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0); nf = cross(v1, v2).normal(); out_para[i].nf[f] = nf; for (int e = 0; e < 3; ++e) { v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e); ne = cross(v3, nf).normal(); out_para[i].ne[e+f*3] = ne; out_para[i].te[e+f*3] = cross(nf, ne).normal(); } out_para[i].mag_amp[f] = dot(mag_z, nf); } in_tet[i].att = out_para.get(i); } return; } void gctl::callink_magnetic_para_earth_sph(magtet_ren17 &in_tet, magtet_para_ren17 &out_para, double inclina_deg, double declina_deg, point3dc *mag_vec, double field_tense) { if (declina_deg < -180.0 || declina_deg > 180.0 || inclina_deg < -90 || inclina_deg > 90 || field_tense < 0.0) { throw invalid_argument("[gctl::callink_magnetic_para_earth_sph] Invalid parameters."); } point3dc v1, v2, v3, ne, nf, mag_z; point3ds s; double I = inclina_deg*M_PI/180.0; double A = declina_deg*M_PI/180.0; if (in_tet.vert[0] == nullptr || in_tet.vert[1] == nullptr || in_tet.vert[2] == nullptr || in_tet.vert[3] == nullptr) { throw runtime_error("[gctl::callink_magnetic_para_earth_sph] Invalid vertex pointer."); } // magnetization vector at the local coordinates // note here the postive direction of the inclination angle is downward // note here the postive direction of the declination angle is clockwise mag_z.x = cos(I)*sin(A); mag_z.y = cos(I)*cos(A); mag_z.z = -1.0*sin(I); s = in_tet.center().c2s(); // magnetic susceptibility is taken as one here // rotate the local coordinate system to the regular status mag_z = field_tense * mag_z.rotate((90.0 - s.lat)*M_PI/180.0, 0.0, (90.0 + s.lon)*M_PI/180.0).normal(); if (mag_vec != nullptr) *mag_vec = mag_z; for (int f = 0; f < 4; ++f) { v1 = *in_tet.fget(f, 1) - *in_tet.fget(f, 0); v2 = *in_tet.fget(f, 2) - *in_tet.fget(f, 0); nf = cross(v1, v2).normal(); out_para.nf[f] = nf; for (int e = 0; e < 3; ++e) { v3 = *in_tet.fget(f, (e+1)%3) - *in_tet.fget(f, e); ne = cross(v3, nf).normal(); out_para.ne[e+f*3] = ne; out_para.te[e+f*3] = cross(nf, ne).normal(); } out_para.mag_amp[f] = dot(mag_z, nf); } in_tet.att = &out_para; return; } // declare algorithm for individual element and observation point double magkernel_tetrahedron_potential_sig(const gctl::magtet_ren17 &ele_ptr, const gctl::point3dc &op_ptr); gctl::point3dc magkernel_tetrahedron_gradient_sig(const gctl::magtet_ren17 &ele_ptr, const gctl::point3dc &op_ptr); gctl::tensor magkernel_tetrahedron_tensor_sig(const gctl::magtet_ren17 &ele_ptr, const gctl::point3dc &op_ptr); // define functions void gctl::magkernel(matrix &out_kernel, const array &ele, const array &obsp, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "magkernel_potential"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = magkernel_tetrahedron_potential_sig(ele[j], obsp[i]); } } return; } void gctl::magkernel(matrix &out_kernel, const array &ele, const array &obsp, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); point3dc pc; out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "magkernel_gradient"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j, pc) schedule(guided) for (j = 0; j < e_size; j++) { pc = magkernel_tetrahedron_gradient_sig(ele[j], obsp[i]); out_kernel[i][j] = pc; } } return; } void gctl::magkernel(matrix &out_kernel, const array &ele, const array &obsp, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "magkernel_tensor"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = magkernel_tetrahedron_tensor_sig(ele[j], obsp[i]); } } return; } void gctl::magkernel(matrix &out_kernel, const array &ele, const array &obsp, double geo_declina, double geo_inclina, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); // note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one. double hax_f = cos(M_PI*geo_inclina/180.0)*sin(M_PI*geo_declina/180.0); double hay_f = cos(M_PI*geo_inclina/180.0)*cos(M_PI*geo_declina/180.0); double za_f = sin(M_PI*geo_inclina/180.0); out_kernel.resize(o_size, e_size); point3dc tmp_grad; gctl::progress_bar bar(o_size, "magkernel_deltaT"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j, tmp_grad) shared (hax_f, hay_f, za_f) schedule(guided) for (j = 0; j < e_size; j++) { tmp_grad = magkernel_tetrahedron_gradient_sig(ele[j], obsp[i]); out_kernel[i][j] = hax_f*tmp_grad.x + hay_f*tmp_grad.y + za_f*tmp_grad.z; } } return; } void gctl::magkernel(matrix &out_kernel, const array &ele, const array &obsp, verbose_type_e verbose) { int i, j; point3dc obsp_c; tensor R; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "magkernel_gradient"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j, obsp_c) schedule(guided) for (j = 0; j < e_size; j++) { obsp_c = obsp[i].s2c(); out_kernel[i][j] = magkernel_tetrahedron_gradient_sig(ele[j], obsp_c); } } for (i = 0; i < o_size; i++) { R[0][0] = sin((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI); R[0][1] = sin((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI); R[0][2] = cos((0.5-obsp[i].lat/180.0)*M_PI); R[1][0] = cos((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI); R[1][1] = cos((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI); R[1][2] = -1.0*sin((0.5-obsp[i].lat/180.0)*M_PI); R[2][0] = -1.0*sin((2.0+obsp[i].lon/180.0)*M_PI); R[2][1] = cos((2.0+obsp[i].lon/180.0)*M_PI); R[2][2] = 0.0; #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = R * out_kernel[i][j]; out_kernel[i][j].x *= -1.0; } } return; } void gctl::magkernel(matrix &out_kernel, const array &ele, const array &obsp, verbose_type_e verbose) { int i, j; point3dc obsp_c; tensor R, R_T; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "magkernel_tensor"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j, obsp_c) schedule(guided) for (j = 0; j < e_size; j++) { obsp_c = obsp[i].s2c(); out_kernel[i][j] = magkernel_tetrahedron_tensor_sig(ele[j], obsp_c); } } for (i = 0; i < o_size; i++) { R[0][0] = sin((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI); R[0][1] = sin((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI); R[0][2] = cos((0.5-obsp[i].lat/180.0)*M_PI); R[1][0] = cos((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI); R[1][1] = cos((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI); R[1][2] = -1.0*sin((0.5-obsp[i].lat/180.0)*M_PI); R[2][0] = -1.0*sin((2.0+obsp[i].lon/180.0)*M_PI); R[2][1] = cos((2.0+obsp[i].lon/180.0)*M_PI); R[2][2] = 0.0; R_T = R.transpose(); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = R*(out_kernel[i][j]*R_T); out_kernel[i][j][0][0] *= -1.0; out_kernel[i][j][0][1] *= -1.0; out_kernel[i][j][0][2] *= -1.0; out_kernel[i][j][1][0] *= -1.0; out_kernel[i][j][2][0] *= -1.0; } } return; } gctl::point3dc gctl::magkernel_single(const magtet_ren17 &ele, const point3ds &obsp) { tensor R; R[0][0] = sin((0.5-obsp.lat/180.0)*M_PI)*cos((2.0+obsp.lon/180.0)*M_PI); R[0][1] = sin((0.5-obsp.lat/180.0)*M_PI)*sin((2.0+obsp.lon/180.0)*M_PI); R[0][2] = cos((0.5-obsp.lat/180.0)*M_PI); R[1][0] = cos((0.5-obsp.lat/180.0)*M_PI)*cos((2.0+obsp.lon/180.0)*M_PI); R[1][1] = cos((0.5-obsp.lat/180.0)*M_PI)*sin((2.0+obsp.lon/180.0)*M_PI); R[1][2] = -1.0*sin((0.5-obsp.lat/180.0)*M_PI); R[2][0] = -1.0*sin((2.0+obsp.lon/180.0)*M_PI); R[2][1] = cos((2.0+obsp.lon/180.0)*M_PI); R[2][2] = 0.0; point3dc obsp_c = obsp.s2c(); point3dc out_k = magkernel_tetrahedron_gradient_sig(ele, obsp_c); out_k = R * out_k; out_k.x *= -1.0; return out_k; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "magobser_potential"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] += magkernel_tetrahedron_potential_sig(ele[j], obsp[i]); } } return; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); point3dc pc; out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); gctl::progress_bar bar(e_size, "magobser_gradient"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i, pc) schedule(guided) for (i = 0; i < o_size; i++) { pc = magkernel_tetrahedron_gradient_sig(ele[j], obsp[i]); out_obs[i] = out_obs[i] + pc; } } return; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_obs.resize(o_size, tensor(0.0)); gctl::progress_bar bar(e_size, "magobser_tensor"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + magkernel_tetrahedron_tensor_sig(ele[j], obsp[i]); } } return; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, const array &sus, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "magobser_potential"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] += sus[j] * magkernel_tetrahedron_potential_sig(ele[j], obsp[i]); } } return; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, const array &sus, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); point3dc pc; out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); gctl::progress_bar bar(e_size, "magobser_gradient"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i, pc) schedule(guided) for (i = 0; i < o_size; i++) { pc = sus[j] * magkernel_tetrahedron_gradient_sig(ele[j], obsp[i]); out_obs[i] = out_obs[i] + pc; } } return; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, const array &sus, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_obs.resize(o_size, tensor(0.0)); gctl::progress_bar bar(e_size, "magobser_tensor"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + sus[j] * magkernel_tetrahedron_tensor_sig(ele[j], obsp[i]); } } return; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, const array &sus, verbose_type_e verbose) { int i, j; point3dc obsp_c; gctl::tensor R; int o_size = obsp.size(); int e_size = ele.size(); out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); gctl::progress_bar bar(e_size, "magobser_gradient"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i, obsp_c) schedule(guided) for (i = 0; i < o_size; i++) { obsp_c = obsp[i].s2c(); out_obs[i] = out_obs[i] + sus[j] * magkernel_tetrahedron_gradient_sig(ele[j], obsp_c); } } #pragma omp parallel for private (i, R) schedule(guided) for (i = 0; i < o_size; i++) { R[0][0] = sin((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI); R[0][1] = sin((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI); R[0][2] = cos((0.5-obsp[i].lat/180.0)*M_PI); R[1][0] = cos((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI); R[1][1] = cos((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI); R[1][2] = -1.0*sin((0.5-obsp[i].lat/180.0)*M_PI); R[2][0] = -1.0*sin((2.0+obsp[i].lon/180.0)*M_PI); R[2][1] = cos((2.0+obsp[i].lon/180.0)*M_PI); R[2][2] = 0.0; out_obs[i] = R * out_obs[i]; out_obs[i].x *= -1.0; } return; } void gctl::magobser(array &out_obs, const array &ele, const array &obsp, const array &sus, verbose_type_e verbose) { int i, j; point3dc obsp_c; gctl::tensor R, R_T; int o_size = obsp.size(); int e_size = ele.size(); out_obs.resize(o_size, tensor(0.0)); gctl::progress_bar bar(e_size, "magobser_tensor"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i, obsp_c) schedule(guided) for (i = 0; i < o_size; i++) { obsp_c = obsp[i].s2c(); out_obs[i] = out_obs[i] + sus[j] * magkernel_tetrahedron_tensor_sig(ele[j], obsp_c); } } #pragma omp parallel for private (i, R, R_T) schedule(guided) for (i = 0; i < o_size; i++) { R[0][0] = sin((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI); R[0][1] = sin((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI); R[0][2] = cos((0.5-obsp[i].lat/180.0)*M_PI); R[1][0] = cos((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI); R[1][1] = cos((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI); R[1][2] = -1.0*sin((0.5-obsp[i].lat/180.0)*M_PI); R[2][0] = -1.0*sin((2.0+obsp[i].lon/180.0)*M_PI); R[2][1] = cos((2.0+obsp[i].lon/180.0)*M_PI); R[2][2] = 0.0; R_T = R.transpose(); out_obs[i] = R*(out_obs[i]*R_T); out_obs[i][0][0] *= -1.0; out_obs[i][0][1] *= -1.0; out_obs[i][0][2] *= -1.0; out_obs[i][1][0] *= -1.0; out_obs[i][2][0] *= -1.0; } return; } double magkernel_tetrahedron_potential_sig(const gctl::magtet_ren17 &tet, const gctl::point3dc &site) { double Rij_minus, Rij_plus, Sij_plus, Sij_minus, Rij0, mij0, wi0; double part1, part2, k0, absw, beta; gctl::point3dc oi; // get attribute pointer if (tet.att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_tetrahedron_potential_sig(...)"); gctl::magtet_para_ren17 *mpara = tet.att; double out_pot = 0.0; for (int f = 0; f < 4; ++f) { k0 = 0.0; for (int j = 0; j < 3; ++j) { Rij_minus = (site - *tet.fget(f, j)).module(); Rij_plus = (site - *tet.fget(f, (j+1)%3)).module(); if (j == 0) { wi0 = gctl::dot(site - *tet.fget(f, j), mpara->nf[f]); absw = std::abs(wi0); } oi = site - wi0*mpara->nf[f]; Sij_minus = gctl::dot(*tet.fget(f, j) - oi, mpara->te[3*f+j]); Sij_plus = gctl::dot(*tet.fget(f, (j+1)%3) - oi, mpara->te[3*f+j]); mij0 = gctl::dot(*tet.fget(f, j) - oi, mpara->ne[3*f+j]); Rij0 = std::sqrt(wi0*wi0 + mij0*mij0); part2 = 0.0; if (absw > GCTL_MAG_TETRA_TOL) { beta = std::atan((mij0*Sij_plus)/(Rij0*Rij0+absw*Rij_plus)) - std::atan((mij0*Sij_minus)/(Rij0*Rij0+absw*Rij_minus)); part2 = absw*beta; } part1 = 0.0; if (std::abs(mij0) > GCTL_MAG_TETRA_TOL) { part1 = mij0*std::log((Rij_plus+Sij_plus)/(Rij_minus+Sij_minus)); } k0 += (part1 - part2); } // nT -> T 1e-9 / 4*pi*e-7 = 1/(400*pi)*100 = 1/(4*pi) -> A/m out_pot += 1.0/(4.0*GCTL_Pi)*k0*mpara->mag_amp[f]; } return out_pot; } gctl::point3dc magkernel_tetrahedron_gradient_sig(const gctl::magtet_ren17 &tet, const gctl::point3dc &site) { double Rij_minus, Rij_plus, Sij_plus, Sij_minus, Rij0, mij0, wi0; double beta, Aij, sig, absw; gctl::point3dc oi, k1, part1, part2; // get attribute pointer if (tet.att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_tetrahedron_gradient_sig(...)"); gctl::magtet_para_ren17 *mpara = tet.att; gctl::point3dc out_grad(0.0, 0.0, 0.0); for (int f = 0; f < 4; ++f) { k1.set(0.0, 0.0, 0.0); for (int j = 0; j < 3; ++j) { Rij_minus = (site - *tet.fget(f, j)).module(); Rij_plus = (site - *tet.fget(f, (j+1)%3)).module(); if (j == 0) { wi0 = gctl::dot(site - *tet.fget(f, j), mpara->nf[f]); sig = gctl::sign(wi0); absw = std::abs(wi0); } oi = site - wi0*mpara->nf[f]; Sij_minus = gctl::dot(*tet.fget(f, j) - oi, mpara->te[3*f+j]); Sij_plus = gctl::dot(*tet.fget(f, (j+1)%3) - oi, mpara->te[3*f+j]); mij0 = gctl::dot(*tet.fget(f, j) - oi, mpara->ne[3*f+j]); Rij0 = std::sqrt(wi0*wi0 + mij0*mij0); part2.set(0.0, 0.0, 0.0); if (absw > GCTL_MAG_TETRA_TOL) { beta = atan((mij0*Sij_plus)/(Rij0*Rij0 + absw*Rij_plus)) - atan((mij0*Sij_minus)/(Rij0*Rij0 + absw*Rij_minus)); part2 = sig*beta*mpara->nf[f]; } if (std::abs(Rij0) > GCTL_MAG_TETRA_TOL) { Aij = std::log((long double)(Rij_plus+Sij_plus)) - std::log((long double)(Rij_minus+Sij_minus)); } else if (Sij_plus > 0.0 && Sij_minus > 0.0) { Aij = std::log(Sij_plus) - std::log(Sij_minus); } else if (Sij_plus < 0.0 && Sij_minus < 0.0) { Aij = std::log(-1.0*Sij_minus) - std::log(-1.0*Sij_plus); } else { throw gctl::runtime_error("Observation site on edge. From magtet::mag_gradient()"); } part1 = Aij * mpara->ne[3*f+j]; k1 = k1 - (part1 + part2); } // nT -> T 1e-9 / 4*pi*e-7 = 1/(400*pi)*100 = 1/(4*pi) -> A/m out_grad = out_grad - 1.0/(4.0*GCTL_Pi)*k1*mpara->mag_amp[f]; } return out_grad; } gctl::tensor magkernel_tetrahedron_tensor_sig(const gctl::magtet_ren17 &tet, const gctl::point3dc &site) { double Rij_minus, Rij_plus, Sij_plus, Sij_minus, Rij0, mij0, wi0; double beta, sig, absw; double factor_n_mij, factor_tij; gctl::point3dc oi, grad_Aij; gctl::point3dc grad_Rij_plus, grad_Rij_minus, grad_Sij_plus, grad_Sij_minus; gctl::point3dc grad_mij0, grad_Rij0, grad_abs_wi0; gctl::point3dc grad_a_plus, grad_b_plus, grad_a_minus, grad_b_minus; gctl::point3dc grad_betaij_plus, grad_betaij_minus, grad_betaij; double a_plus, b_plus, a_minus, b_minus; double k3; gctl::tensor tmp_k, k2; // get attribute pointer if (tet.att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_tetrahedron_tensor_sig(...)"); gctl::magtet_para_ren17 *mpara = tet.att; gctl::tensor out_tensor(0.0); for (int f = 0; f < 4; ++f) { k2.set(0.0); k3 = 0.0; for (int j = 0; j < 3; ++j) { Rij_minus = (site - *tet.fget(f, j)).module(); Rij_plus = (site - *tet.fget(f, (j+1)%3)).module(); if (j == 0) { wi0 = gctl::dot(site - *tet.fget(f, j), mpara->nf[f]); sig = gctl::sign(wi0); absw = std::abs(wi0); } oi = site - wi0*mpara->nf[f]; Sij_minus = gctl::dot(*tet.fget(f, j) - oi, mpara->te[3*f+j]); Sij_plus = gctl::dot(*tet.fget(f, (j+1)%3) - oi, mpara->te[3*f+j]); mij0 = gctl::dot(*tet.fget(f, j) - oi, mpara->ne[3*f+j]); Rij0 = std::sqrt(wi0*wi0 + mij0*mij0); if (std::abs(Rij0) > GCTL_MAG_TETRA_TOL) { factor_n_mij = -1.0*(Sij_plus/(Rij0*Rij0*Rij_plus) - Sij_minus/(Rij0*Rij0*Rij_minus)); factor_tij = -1.0/Rij_plus + 1.0/Rij_minus; grad_Aij = (wi0*factor_n_mij)*mpara->nf[f] + factor_tij*mpara->te[3*f+j] - (mij0*factor_n_mij)*mpara->ne[3*f+j]; } else { factor_tij = -1.0/Rij_plus + 1.0/Rij_minus; grad_Aij = factor_tij*mpara->te[3*f+j]; } //tmp_k = gctl::kron(grad_Aij, ne_[e][3*f+j]); tmp_k = gctl::kron(mpara->ne[3*f+j], grad_Aij); k2 = k2 - tmp_k; if (absw > GCTL_MAG_TETRA_TOL) { grad_Rij_plus = (1.0/Rij_plus)*(site - *tet.fget(f, (j+1)%3)); grad_Rij_minus = (1.0/Rij_minus)*(site - *tet.fget(f, j)); grad_Sij_plus = -1.0*mpara->te[3*f+j]; grad_Sij_minus = -1.0*mpara->te[3*f+j]; grad_mij0 = -1.0*mpara->ne[3*f+j]; grad_Rij0 = (1.0/Rij0)*(wi0*mpara->nf[f] - mij0*mpara->ne[3*f+j]); grad_abs_wi0 = sig*mpara->nf[f]; a_plus = Rij0*Rij0 + absw*Rij_plus; b_plus = mij0*Sij_plus; grad_a_plus = (2.0*Rij0)*grad_Rij0 + Rij_plus*grad_abs_wi0 + absw*grad_Rij_plus; grad_b_plus = Sij_plus*grad_mij0 + mij0*grad_Sij_plus; a_minus = Rij0*Rij0 + absw*Rij_minus; b_minus = mij0*Sij_minus; grad_a_minus = (2.0*Rij0)*grad_Rij0 + Rij_minus*grad_abs_wi0 + absw*grad_Rij_minus; grad_b_minus = Sij_minus*grad_mij0 + mij0*grad_Sij_minus; grad_betaij_plus = (1.0/(a_plus*a_plus + b_plus*b_plus))*(a_plus*grad_b_plus - b_plus*grad_a_plus); grad_betaij_minus = (1.0/(a_minus*a_minus + b_minus*b_minus))*(a_minus*grad_b_minus - b_minus*grad_a_minus); grad_betaij = grad_betaij_plus - grad_betaij_minus; tmp_k = gctl::kron(grad_betaij, mpara->nf[f]); k2 = k2 - sig*tmp_k; } else { if (std::abs(mij0) > GCTL_MAG_TETRA_TOL) { k3 += (-1.0/mij0)*(Sij_plus/Rij_plus - Sij_minus/Rij_minus); } } } if (k3 != 0.0) { tmp_k = gctl::kron(mpara->nf[f], mpara->nf[f]); k2 = k2 - k3*tmp_k; } // nT -> T 1e-9 / 4*pi*e-7 = 1/(400*pi)*100 = 1/(4*pi) -> A/m out_tensor = out_tensor - 1.0/(4.0*GCTL_Pi)*k2*mpara->mag_amp[f]; } return out_tensor; }