/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #ifndef _GCTL_GM_DATA_H #define _GCTL_GM_DATA_H #include "gctl_potential_config.h" #ifdef GCTL_POTENTIAL_OPENMP #include "omp.h" #include #endif #include "gctl/core.h" #include "gctl/utility.h" #include "gctl/geometry.h" #include "gctl/maths.h" #include "gctl/algorithms.h" namespace gctl { /** * @brief components of potential field */ enum gravitational_field_type_e { GravPot, ///< field potential Vx, ///< x-gradient of V (longitudinal-gradient in the spherical coordinates) Vy, ///< y-gradient of V (latitudinal-gradient in the spherical coordinates) Vz, ///< z-gradient of V (radial-gradient in the spherical coordinates) Txx, ///< x-gradient of Gx Txy, ///< y-gradient of Gx Txz, ///< z-gradient of Gx Tyx, ///< x-gradient of Gy Tyy, ///< y-gradient of Gy Tyz, ///< z-gradient of Gy Tzx, ///< x-gradient of Gz Tzy, ///< y-gradient of Gz Tzz, ///< z-gradient of Gz }; enum magnetic_field_type_e { MagPot, Hax, Hay, Za, Bx, By, Bz, Bxx, Bxy, Bxz, Byx, Byy, Byz, Bzx, Bzy, Bzz, DeltaT, ///< total magnetic strength DeltaTx, ///< x-gradient of total magnetic strength DeltaTy, ///< x-gradient of total magnetic strength DeltaTz, ///< x-gradient of total magnetic strength }; /** * @brief A structure holds all outputs of the standard IGRF or EMM program. * */ struct IGRF_para { int Year, Month, Day; char CSystem, AltiCode; double Altitude, Latitude, Longitude; double D, I, H_nT, X_nT, Y_nT, Z_nT, F_nT, dD_min, dI_min, dH_nT, dX_nT, dY_nT, dZ_nT, dF_nT; int D_deg, D_min, I_deg, I_min; }; /** * @brief Calculate the transform matrix of the vector componments wrt. the spherical coordinates. * * @param op The observation point on a sphere * @return The transform matrix */ tensor transform_matrix(const point3ds &op); /** * @brief Transform localized magnetization vectors on a sphere to the absolute Cartesian coordinates. * * @param abs_b_ Output absolute vectors * @param geo_b_ Local magnetization vectors on a sphere * @param loc_s_ Spherical coordinates of the local vectors */ void geomag_local2Cartesian(array &abs_b_, const array &geo_b_, const array &loc_s_); /** * @brief Read output table of the standard IGRF or EMM program * * @param file Input filename * @param IGRFs Return IGRF parameters * @param head_record Lines of head records * @param ext_f File name extension */ void read_IGRF_table(std::string file, array &IGRFs, int head_record = 1, std::string ext_f = ".txt"); /** * @brief Transform magnetic components data to delta_T anomalies data. * * @param Hax Hax component of the magnetic data * @param Hay Hay component of the magnetic data * @param Za Za component of the magnetic data * @param deltaT Output delta_T anomalies data * @param T0_inclina Inclination degree of the earth normal magnetic field. * @param T0_declina Declination degree of the earth normal magnetic field. */ void magnetic_components2deltaT(const _1d_array &Hax, const _1d_array &Hay, const _1d_array &Za, _1d_array &deltaT, double T0_inclina, double T0_declina); /** * @brief Transform magnetic components data to delta_T anomalies data. * * @param Mag_components Magnetic components of the magnetic data * @param deltaT Output delta_T anomalies data * @param T0_inclina Inclination degree of the earth normal magnetic field. * @param T0_declina Declination degree of the earth normal magnetic field. */ void magnetic_components2deltaT(const array &Mag_components, _1d_array &deltaT, double T0_inclina, double T0_declina); /** * @brief Transform magnetic tensor data to delta_T gradient anomalies data. * * @param Mag_tensors Magnetic tensors of the magnetic data * @param deltaTs Output delta_T gradient anomalies data * @param T0_inclina Inclination degree of the earth normal magnetic field. * @param T0_declina Declination degree of the earth normal magnetic field. */ void magnetic_tensors2deltaTs(const array &Mag_tensors, array &deltaTs, double T0_inclina, double T0_declina); /** * @brief Transform magnetic components data to delta_T anomalies data. * * @note note here Mag_components[i].x is the reversed radial component. * Mag_components[i].y is the latitudinal component (south pointing). * to use it in a local cratesian coordinate, we need to reverse it. * Mag_components[i].z is the longtidinal component (east pointing) * * @param Mag_components Magnetic components of the magnetic data * @param deltaT Output delta_T anomalies data * @param T0_inclina Inclination degrees of the earth normal magnetic field. * @param T0_declina Declination degrees of the earth normal magnetic field. */ void magnetic_components2deltaT_sph(const array &Mag_components, const _1d_array &T0_inclina, const _1d_array &T0_declina, _1d_array &deltaT); /** * @brief Transform magnetic components data to delta_T anomalies data. * * @note note here Mag_components.x is the reversed radial component. * Mag_components.y is the latitudinal component (south pointing). * to use it in a local cratesian coordinate, we need to reverse it. * Mag_components.z is the longtidinal component (east pointing) * * @param Mag_components Magnetic components of the magnetic data * @param T0_inclina Inclination degrees of the earth normal magnetic field. * @param T0_declina Declination degrees of the earth normal magnetic field. */ double magnetic_components2deltaT_sph(const point3dc &Mag_components, double T0_inclina, double T0_declina); /** * @brief Transform magnetic tensor data to delta_T gradient anomalies data. * * @param Mag_tensors Magnetic tensors of the magnetic data * @param deltaTs Output delta_T gradient anomalies data * @param T0_inclina Inclination degrees of the earth normal magnetic field. * @param T0_declina Declination degrees of the earth normal magnetic field. */ void magnetic_tensors2deltaTs_sph(const array &Mag_tensors, const _1d_array &T0_inclina, const _1d_array &T0_declina, array &deltaTs); /** * @brief Calculate the power spectrum of given spherical harmonic coefficients. * * @param P Returned power spectrum * @param C Cosine coefficients strats from 0 order 0 degree up to least N order N degree * @param S Sine coefficients strats from 0 order 0 degree up to least N order N degree * @param R Reference radius (usually is 6371.2 km) * @param r Observation radius * @param n Strat order * @param N End order */ void power_spectrum_shc(array &P, const array &C, const array &S, double R, double r, int n, int N); } #endif // _GCTL_GM_DATA_H