/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "mkernel_dipole.h" void gctl::mag_axial_dipole_parameters(double &M, double &I, double r, double lat_deg, double sus, double ref_r, double abs_g0) { M = sus*fabs(abs_g0)*power3(ref_r/r)*sqrt(1.0 + 3.0*power2(sind(lat_deg))); I = atan(2.0*tan(GCTL_Pi*lat_deg/180.0)); return; } gctl::point3dc gctl::magkernel_single(const mag_dipole &a_dipole, const point3dc &a_op) { double r = a_op.module(); // T -> nT 1e+9 * 1e-7 -> 1e+2 return 1e+2*a_dipole.M*(3.0*dot(a_dipole.n, a_op)/power5(r)*a_op - 1.0/power3(r)*a_dipole.n); } gctl::point3dc gctl::magkernel_single(const mag_dipole &a_dipole, const point3ds &a_op, tensor *R_ptr) { tensor R; if (R_ptr != nullptr) R = *R_ptr; else R = transform_matrix(a_op); double r = a_op.rad; point3dc pc = a_op.s2c(); // T -> nT 1e+9 * 1e-7 -> 1e+2 point3dc b = 1e+2*a_dipole.M*(3.0*dot(a_dipole.n, pc)/power5(r)*pc - 1.0/power3(r)*a_dipole.n); b = R*b; b.z = 0.0; // the latitudinal componement is zero return b; } void gctl::magobser(array &out_obs, const array &dipoles, const array &obsp, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = dipoles.size(); out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); gctl::progress_bar bar(e_size, "magobser_componments"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + magkernel_single(dipoles[j], obsp[i]);; } } return; } void gctl::magobser(array &out_obs, const array &dipoles, const array &obsp, verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = dipoles.size(); out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); array Rs(o_size); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { Rs[i] = transform_matrix(obsp[i]); } gctl::progress_bar bar(e_size, "magobser_componments"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + magkernel_single(dipoles[j], obsp[i], Rs.get(i)); } } return; }