/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "gm_data.h" gctl::tensor gctl::transform_matrix(const point3ds &op) { tensor R; R[0][0] = sin((0.5 - op.lat/180.0)*GCTL_Pi)*cos((2.0 + op.lon/180.0)*GCTL_Pi); R[0][1] = sin((0.5 - op.lat/180.0)*GCTL_Pi)*sin((2.0 + op.lon/180.0)*GCTL_Pi); R[0][2] = cos((0.5 - op.lat/180.0)*GCTL_Pi); R[1][0] = cos((0.5 - op.lat/180.0)*GCTL_Pi)*cos((2.0 + op.lon/180.0)*GCTL_Pi); R[1][1] = cos((0.5 - op.lat/180.0)*GCTL_Pi)*sin((2.0 + op.lon/180.0)*GCTL_Pi); R[1][2] = -1.0*sin((0.5 - op.lat/180.0)*GCTL_Pi); R[2][0] = -1.0*sin((2.0 + op.lon/180.0)*GCTL_Pi); R[2][1] = cos((2.0 + op.lon/180.0)*GCTL_Pi); R[2][2] = 0.0; return R; } void gctl::geomag_local2Cartesian(array &abs_b_, const array &geo_b_, const array &loc_s_) { if (geo_b_.size() != loc_s_.size()) { throw std::runtime_error("[gctl::geomag_local2Cartesian] Incompatible input arraies' size."); } abs_b_.resize(geo_b_.size()); point3dc mag_v; for (size_t i = 0; i < geo_b_.size(); i++) { // magnetization vector at the local coordinates // note here the postive direction of the inclination angle is downward // note here the postive direction of the declination angle is clockwise mag_v.x = geo_b_[i].z; mag_v.y = geo_b_[i].y; mag_v.z = -1.0*geo_b_[i].x; // magnetic susceptibility is taken as one here // rotate the local coordinate system to the regular status abs_b_[i] = mag_v.rotate((90.0 - loc_s_[i].lat)*GCTL_Pi/180.0, 0.0, (90.0 + loc_s_[i].lon)*GCTL_Pi/180.0); } return; } void gctl::read_IGRF_table(std::string file, array &IGRFs, int head_record, std::string ext_f) { std::ifstream infile; gctl::open_infile(infile, file, ext_f); std::vector vec_para; IGRF_para tmp_para; std::string err_str, tmp_str; std::stringstream tmp_ss; std::string date_str, alti_str, dd_str, dm_str, id_str, im_str; // 头信息就跳过 for (size_t i = 0; i < head_record; i++) { getline(infile, tmp_str); } while (getline(infile, tmp_str)) { //Date Coord-System Altitude Latitude Longitude D_deg D_min I_deg I_min H_nT X_nT Y_nT Z_nT F_nT dD_min dI_min dH_nT dX_nT dY_nT dZ_nT dF_nT //2017,6,15 D M4000.00 30.0167 105.017 -2d 16m 46d 52m 34358.9 34332.2 -1354.1 36667.2 50249.6 -3.8 5.6 -13.2 -14.8 -37.9 105.0 67.6 tmp_ss.clear(); tmp_ss.str(tmp_str); tmp_ss >> date_str >> tmp_para.CSystem >> alti_str >> tmp_para.Latitude >> tmp_para.Longitude >> dd_str >> dm_str >> id_str >> im_str >> tmp_para.H_nT >> tmp_para.X_nT >> tmp_para.Y_nT >> tmp_para.Z_nT >> tmp_para.F_nT >> tmp_para.dD_min >> tmp_para.dI_min >> tmp_para.dH_nT >> tmp_para.dX_nT >> tmp_para.dY_nT >> tmp_para.dZ_nT >> tmp_para.dF_nT; if (1 != sscanf(dd_str.c_str(), "%dd", &tmp_para.D_deg) || 1 != sscanf(dm_str.c_str(), "%dm", &tmp_para.D_min) || 1 != sscanf(id_str.c_str(), "%dd", &tmp_para.I_deg) || 1 != sscanf(im_str.c_str(), "%dm", &tmp_para.I_min) || 2 != sscanf(alti_str.c_str(), "%c%lf", &tmp_para.AltiCode, &tmp_para.Altitude)) { throw gctl::invalid_argument("[gctl::read_IGRF_table] Wrong format: " + tmp_str); } if (3 != sscanf(date_str.c_str(), "%d,%d,%d", &tmp_para.Year, &tmp_para.Month, &tmp_para.Day)) { double deci_year; if (1 != sscanf(date_str.c_str(), "%lf", &deci_year)) { throw gctl::invalid_argument("[gctl::read_IGRF_table] Wrong format: " + tmp_str); } decimal_year2date(deci_year, tmp_para.Year, tmp_para.Month, tmp_para.Day); } tmp_para.I = fabs(tmp_para.I_deg) + tmp_para.I_min/60.0; tmp_para.D = fabs(tmp_para.D_deg) + tmp_para.D_min/60.0; if (tmp_para.I_deg < 0) tmp_para.I *= -1; if (tmp_para.D_deg < 0) tmp_para.D *= -1; vec_para.push_back(tmp_para); } infile.close(); IGRFs.input(vec_para); destroy_vector(vec_para); return; } void gctl::magnetic_components2deltaT(const _1d_array &Hax, const _1d_array &Hay, const _1d_array &Za, _1d_array &deltaT, double T0_inclina, double T0_declina) { if (Hax.size() != Hay.size() || Hay.size() != Za.size()) { throw std::runtime_error("[gctl::magnetic_components2deltaT] Unmatched components' size."); } // note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one. double hax_f = cos(GCTL_Pi*T0_inclina/180.0)*sin(GCTL_Pi*T0_declina/180.0); double hay_f = cos(GCTL_Pi*T0_inclina/180.0)*cos(GCTL_Pi*T0_declina/180.0); double za_f = sin(GCTL_Pi*T0_inclina/180.0); deltaT.resize(Hax.size()); for (size_t i = 0; i < Hax.size(); i++) { deltaT[i] = hax_f*Hax[i] + hay_f*Hay[i] + za_f*Za[i]; } return; } void gctl::magnetic_components2deltaT(const array &Mag_components, _1d_array &deltaT, double T0_inclina, double T0_declina) { // note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one. double hax_f = cos(GCTL_Pi*T0_inclina/180.0)*sin(GCTL_Pi*T0_declina/180.0); double hay_f = cos(GCTL_Pi*T0_inclina/180.0)*cos(GCTL_Pi*T0_declina/180.0); double za_f = sin(GCTL_Pi*T0_inclina/180.0); deltaT.resize(Mag_components.size()); for (size_t i = 0; i < Mag_components.size(); i++) { deltaT[i] = hax_f*Mag_components[i].x + hay_f*Mag_components[i].y + za_f*Mag_components[i].z; } return; } void gctl::magnetic_tensors2deltaTs(const array &Mag_tensors, array &deltaTs, double T0_inclina, double T0_declina) { // note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one. double hax_f = cos(GCTL_Pi*T0_inclina/180.0)*sin(GCTL_Pi*T0_declina/180.0); double hay_f = cos(GCTL_Pi*T0_inclina/180.0)*cos(GCTL_Pi*T0_declina/180.0); double za_f = sin(GCTL_Pi*T0_inclina/180.0); deltaTs.resize(Mag_tensors.size()); for (size_t i = 0; i < Mag_tensors.size(); i++) { deltaTs[i].x = hax_f*Mag_tensors[i][0][0] + hay_f*Mag_tensors[i][0][1] + za_f*Mag_tensors[i][0][2]; deltaTs[i].y = hax_f*Mag_tensors[i][0][1] + hay_f*Mag_tensors[i][1][1] + za_f*Mag_tensors[i][1][2]; deltaTs[i].z = hax_f*Mag_tensors[i][0][2] + hay_f*Mag_tensors[i][1][2] + za_f*Mag_tensors[i][2][2]; } return; } void gctl::magnetic_components2deltaT_sph(const array &Mag_components, const _1d_array &T0_inclina, const _1d_array &T0_declina, _1d_array &deltaT) { // note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one. deltaT.resize(Mag_components.size()); for (size_t i = 0; i < Mag_components.size(); i++) { double hax_f = cos(GCTL_Pi*T0_inclina[i]/180.0)*sin(GCTL_Pi*T0_declina[i]/180.0); double hay_f = cos(GCTL_Pi*T0_inclina[i]/180.0)*cos(GCTL_Pi*T0_declina[i]/180.0); double za_f = sin(GCTL_Pi*T0_inclina[i]/180.0); // note here Mag_components[i].x is the reversed radial component // Mag_components[i].y is the latitudinal component (south pointing). to use it in a local cratesian coordinate, we need to reverse it // Mag_components[i].z is the longtidinal component (east pointing) deltaT[i] = hax_f*Mag_components[i].z - hay_f*Mag_components[i].y + za_f*Mag_components[i].x; } return; } double gctl::magnetic_components2deltaT_sph(const point3dc &Mag_components, double T0_inclina, double T0_declina) { double hax_f = cos(GCTL_Pi*T0_inclina/180.0)*sin(GCTL_Pi*T0_declina/180.0); double hay_f = cos(GCTL_Pi*T0_inclina/180.0)*cos(GCTL_Pi*T0_declina/180.0); double za_f = sin(GCTL_Pi*T0_inclina/180.0); // note here Mag_components[i].x is the reversed radial component // Mag_components[i].y is the latitudinal component (south pointing). to use it in a local cratesian coordinate, we need to reverse it // Mag_components[i].z is the longtidinal component (east pointing) return hax_f*Mag_components.z - hay_f*Mag_components.y + za_f*Mag_components.x; } void gctl::magnetic_tensors2deltaTs_sph(const array &Mag_tensors, const _1d_array &T0_inclina, const _1d_array &T0_declina, array &deltaTs) { // note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one. deltaTs.resize(Mag_tensors.size()); for (size_t i = 0; i < Mag_tensors.size(); i++) { double hax_f = cos(GCTL_Pi*T0_inclina[i]/180.0)*sin(GCTL_Pi*T0_declina[i]/180.0); double hay_f = cos(GCTL_Pi*T0_inclina[i]/180.0)*cos(GCTL_Pi*T0_declina[i]/180.0); double za_f = sin(GCTL_Pi*T0_inclina[i]/180.0); // note here Mag_tensors[i][:][0] is the reversed radial component // Mag_components[i][:][1] is the latitudinal component (south pointing). to use it in a local cratesian coordinate, we need to reverse it // Mag_components[i][:][2] is the longtidinal component (east pointing) deltaTs[i].x = za_f*Mag_tensors[i][0][0] - hay_f*Mag_tensors[i][0][1] + hax_f*Mag_tensors[i][0][2]; deltaTs[i].y = za_f*Mag_tensors[i][0][1] - hay_f*Mag_tensors[i][1][1] + hax_f*Mag_tensors[i][1][2]; deltaTs[i].z = za_f*Mag_tensors[i][0][2] - hay_f*Mag_tensors[i][1][2] + hax_f*Mag_tensors[i][2][2]; } return; } void gctl::power_spectrum_shc(array &P, const array &C, const array &S, double R, double r, int n, int N) { if (n < 0 || n >= N || C.size() < (N + 1)*(N + 2)/2 || S.size() < (N + 1)*(N + 2)/2) { throw std::runtime_error("[gctl::power_spectrum_shc] Invalid input parameters."); } P.resize(N - n + 1, 0); int id; for (int i = n; i < N + 1; i++) { id = i*(i + 1)/2; for (int j = 0; j < i + 1; j++) { P[i - n] += (C[id + j]*C[id + j] + S[id + j]*S[id + j]); } P[i - n] *= (n + 1)*pow(R/r, 2*n + 4); } return; }