/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "gctl/core.h" #include "gctl/io.h" #include "../lib/potential.h" #include "iostream" int main(int argc, char const *argv[]) try { // set up observation parameters and block parameters double lon, lat; gctl::array obes(101*101); for (int i = 0; i < 101; i++) { lat = 10.0 + 0.1*i; for (int j = 0; j < 101; j++) { lon = 20.0 + 0.1*j; obes[i*101+j].lon = lon; obes[i*101+j].lat = lat; obes[i*101+j].rad = GCTL_Earth_Radius + 40000.0; } } gctl::array tesses(1); gctl::array mtess(1); gctl::_1d_array inclina(1, 60.0), declina(1, 20.0); tesses[0].set(GCTL_Earth_Radius - 21000.0, GCTL_Earth_Radius - 1000.0, 24, 26, 14, 16); gctl::callink_magnetic_para_earth_sph(tesses, mtess, 60, 20); gctl::set_geomag_angles(mtess, inclina, declina); gctl::array sus(1, 0.08); gctl::array data_x, data_y, data_z, deltaT; magobser(data_z, tesses, obes, sus, gctl::Za, 4, gctl::ShortMsg); gctl::save_netcdf_grid("data/tesseroid_mag", data_z, 101, 101, 20.0, 0.1, 10.0, 0.1, "x", "y", "Za"); magobser(data_x, tesses, obes, sus, gctl::Hax, 4, gctl::ShortMsg); gctl::append_netcdf_grid("data/tesseroid_mag", data_x, "x", "y", "Hax"); magobser(data_y, tesses, obes, sus, gctl::Hay, 4, gctl::ShortMsg); gctl::append_netcdf_grid("data/tesseroid_mag", data_y, "x", "y", "Hay"); magobser(deltaT, tesses, obes, sus, gctl::DeltaT, 4, gctl::ShortMsg); gctl::append_netcdf_grid("data/tesseroid_mag", deltaT, "x", "y", "DeltaT"); gctl::array obsgrad(obes.size()); gctl::_1d_array obs_inclina(obes.size(), 60.0), obs_declina(obes.size(), 20.0); for (size_t i = 0; i < obsgrad.size(); i++) { obsgrad[i].x = data_z[i]; obsgrad[i].y = data_x[i]; obsgrad[i].z = data_y[i]; } magnetic_components2deltaT_sph(obsgrad, obs_inclina, obs_declina, deltaT); gctl::append_netcdf_grid("data/tesseroid_mag", deltaT, "x", "y", "DeltaT2"); return 0; } catch (std::exception &e) { GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, 0, 0); }