/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "gkernel_tetrahedron.h" using namespace gctl::geometry3d; void gctl::callink_gravity_para(array &in_tet, array &out_para) { point3dc v1, v2, v3, nf; out_para.resize(in_tet.size()); for (int i = 0; i < in_tet.size(); ++i) { if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr || in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr) { throw runtime_error("Invalid vertex pointer. From callink_gravity_para(...)"); } for (int f = 0; f < 4; ++f) { v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0); v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0); nf = cross(v1, v2).normal(); out_para[i].F[f] = kron(nf, nf); for (int e = 0; e < 3; ++e) { v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e); out_para[i].edglen[e+f*3] = v3.module(); out_para[i].E[e+f*3] = kron(nf, cross(v3, nf).normal()); } } in_tet[i].att = out_para.get(i); } return; } typedef void (*gkernel_tetra_ptr)(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_pot(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vx(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vy(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vz(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vxx(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vxy(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vxz(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vyy(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vyz(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vzz(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); /** * @brief Integrated callback function of the gravitational kernel of a tetrahedron element * * @param out_kernel The output kernel * @param[in] ele The tetrahedron elements * @param[in] obsp The observation points * @param[in] comp_id The component identifier * @param[in] verbose The verbose level */ void gctl::gkernel(matrix &out_kernel, const array &ele, const array &obsp, gravitational_field_type_e comp_id, verbose_type_e verbose) { gkernel_tetra_ptr tetra_kernel; switch (comp_id) { case GravPot: tetra_kernel = gkernel_tetrahedron_pot; break; case Vx: tetra_kernel = gkernel_tetrahedron_vx; break; case Vy: tetra_kernel = gkernel_tetrahedron_vy; break; case Vz: tetra_kernel = gkernel_tetrahedron_vz; break; case Txx: tetra_kernel = gkernel_tetrahedron_vxx; break; case Txy: tetra_kernel = gkernel_tetrahedron_vxy; break; case Txz: tetra_kernel = gkernel_tetrahedron_vxz; break; case Tyx: tetra_kernel = gkernel_tetrahedron_vxy; break; case Tyy: tetra_kernel = gkernel_tetrahedron_vyy; break; case Tyz: tetra_kernel = gkernel_tetrahedron_vyz; break; case Tzx: tetra_kernel = gkernel_tetrahedron_vxz; break; case Tzy: tetra_kernel = gkernel_tetrahedron_vyz; break; case Tzz: tetra_kernel = gkernel_tetrahedron_vzz; break; default: tetra_kernel = gkernel_tetrahedron_vz; break; } return tetra_kernel(out_kernel, ele, obsp, verbose); } typedef void (*gkernel_tetra_ptr_sph)(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_pot(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vr(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vt(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vrr(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vrt(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vrp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vtt(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vtp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); void gkernel_tetrahedron_vpp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose); /** * @brief Integrated callback function of the gravitational kernel of a tetrahedron element * * @param out_kernel The output kernel * @param[in] ele The tetrahedron elements * @param[in] obsp The observation points * @param[in] comp_id The component identifier * @param[in] verbose The verbose level */ void gctl::gkernel(matrix &out_kernel, const array &ele, const array &obsp, gravitational_field_type_e comp_id, verbose_type_e verbose) { gkernel_tetra_ptr_sph tetra_kernel; switch (comp_id) { case GravPot: tetra_kernel = gkernel_tetrahedron_pot; break; case Vz: tetra_kernel = gkernel_tetrahedron_vr; break; case Vy: tetra_kernel = gkernel_tetrahedron_vt; break; case Vx: tetra_kernel = gkernel_tetrahedron_vp; break; case Tzz: tetra_kernel = gkernel_tetrahedron_vrr; break; case Tzy: tetra_kernel = gkernel_tetrahedron_vrt; break; case Tzx: tetra_kernel = gkernel_tetrahedron_vrp; break; case Tyz: tetra_kernel = gkernel_tetrahedron_vrt; break; case Tyy: tetra_kernel = gkernel_tetrahedron_vtt; break; case Tyx: tetra_kernel = gkernel_tetrahedron_vtp; break; case Txz: tetra_kernel = gkernel_tetrahedron_vrp; break; case Txy: tetra_kernel = gkernel_tetrahedron_vtp; break; case Txx: tetra_kernel = gkernel_tetrahedron_vpp; break; default: tetra_kernel = gkernel_tetrahedron_vr; break; } return tetra_kernel(out_kernel, ele, obsp, verbose); } double gkernel_tetra_potential_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op); gctl::point3dc gkernel_tetra_gradient_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op); gctl::tensor gkernel_tetra_tensor_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op); double gkernel_tetra_potential_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op); gctl::point3dc gkernel_tetra_gradient_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op); gctl::tensor gkernel_tetra_tensor_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op); void gkernel_tetrahedron_pot(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_potential"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_potential_sig(ele[j], obsp[i]); } } return; } void gkernel_tetrahedron_vx(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vx"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_gradient_sig(ele[j], obsp[i]).x; } } return; } void gkernel_tetrahedron_vy(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vy"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_gradient_sig(ele[j], obsp[i]).y; } } return; } void gkernel_tetrahedron_vz(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vz"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_gradient_sig(ele[j], obsp[i]).z; } } return; } void gkernel_tetrahedron_vxx(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vxx"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(0, 0); } } return; } void gkernel_tetrahedron_vxy(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vxy"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(0, 1); } } return; } void gkernel_tetrahedron_vxz(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vxz"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(0, 2); } } return; } void gkernel_tetrahedron_vyy(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vyy"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(1, 1); } } return; } void gkernel_tetrahedron_vyz(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vyz"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(1, 2); } } return; } void gkernel_tetrahedron_vzz(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vzz"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(2, 2); } } return; } void gkernel_tetrahedron_pot(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_potential"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_potential_sig_sph(ele[j], obsp[i]); } } return; } void gkernel_tetrahedron_vr(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vr"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_gradient_sig_sph(ele[j], obsp[i]).x; } } return; } void gkernel_tetrahedron_vt(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vt"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_gradient_sig_sph(ele[j], obsp[i]).y; } } return; } void gkernel_tetrahedron_vp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vp"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_gradient_sig_sph(ele[j], obsp[i]).z; } } return; } void gkernel_tetrahedron_vrr(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vrr"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(0, 0); } } return; } void gkernel_tetrahedron_vrt(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vrt"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(0, 1); } } return; } void gkernel_tetrahedron_vrp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vrp"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(0, 2); } } return; } void gkernel_tetrahedron_vtt(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vtt"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(1, 1); } } return; } void gkernel_tetrahedron_vtp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vtp"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(1, 2); } } return; } void gkernel_tetrahedron_vpp(gctl::matrix &out_kernel, const gctl::array &ele, const gctl::array &obsp, gctl::verbose_type_e verbose) { int i, j; int o_size = obsp.size(); int e_size = ele.size(); out_kernel.resize(o_size, e_size); gctl::progress_bar bar(o_size, "gkernel_vpp"); for (i = 0; i < o_size; i++) { if (verbose == gctl::FullMsg) bar.progressed(i); else if (verbose == gctl::ShortMsg) bar.progressed_simple(i); #pragma omp parallel for private (j) schedule(guided) for (j = 0; j < e_size; j++) { out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(2, 2); } } return; } void gctl::gobser(array &out_obs, const array &ele, const array &ops, const array &rho, verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_potential"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] += gkernel_tetra_potential_sig(ele[j], ops[i]) * rho[j]; } } return; } void gctl::gobser(array &out_obs, const array &ele, const array &ops, const array &rho, verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); gctl::progress_bar bar(e_size, "gobser_gradient"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + gkernel_tetra_gradient_sig(ele[j], ops[i]) * rho[j]; } } return; } void gctl::gobser(array &out_obs, const array &ele, const array &ops, const array &rho, verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, tensor(0.0)); gctl::progress_bar bar(e_size, "gobser_tensor"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + gkernel_tetra_tensor_sig(ele[j], ops[i]) * rho[j]; } } return; } void gctl::gobser(array &out_obs, const array &ele, const array &ops, const array &rho, verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, 0.0); gctl::progress_bar bar(e_size, "gobser_potential"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] += gkernel_tetra_potential_sig_sph(ele[j], ops[i]) * rho[j]; } } return; } void gctl::gobser(array &out_obs, const array &ele, const array &ops, const array &rho, verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0)); gctl::progress_bar bar(e_size, "gobser_gradient"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + gkernel_tetra_gradient_sig_sph(ele[j], ops[i]) * rho[j]; } } return; } void gctl::gobser(array &out_obs, const array &ele, const array &ops, const array &rho, verbose_type_e verbose) { int i, j; int o_size = ops.size(); int e_size = ele.size(); out_obs.resize(o_size, tensor(0.0)); gctl::progress_bar bar(e_size, "gobser_tensor"); for (j = 0; j < e_size; j++) { if (verbose == gctl::FullMsg) bar.progressed(j); else if (verbose == gctl::ShortMsg) bar.progressed_simple(j); #pragma omp parallel for private (i) schedule(guided) for (i = 0; i < o_size; i++) { out_obs[i] = out_obs[i] + gkernel_tetra_tensor_sig_sph(ele[j], ops[i]) * rho[j]; } } return; } // define individual algorithm here double gkernel_tetra_potential_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum, edge_sum; gctl::point3dc re; gctl::point3dc r_ijk[3]; gctl::point3dc face_tmp(0.0, 0.0, 0.0); gctl::point3dc edge_tmp(0.0, 0.0, 0.0); double L_ijk[3]; gctl::gravtet_para* gp = a_ele.att; int *v_order = a_ele.vec_order; face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.vert[v_order[3*f]] - a_op; r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - a_op; r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - a_op; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp = gp->F[f] * r_ijk[0]; face_sum += dot(r_ijk[0], face_tmp) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.vert[v_order[e+3*f]], a_op); dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], a_op); re = 0.5*(*a_ele.vert[v_order[e+3*f]] + *a_ele.vert[v_order[(e+1)%3+3*f]]) - a_op; Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp = gp->E[e+3*f] * re; edge_sum += dot(re, edge_tmp) * Le; } } // 重力正演中通常z方向取垂直向下为正方向 return -0.5e+8*GCTL_G0*(face_sum - edge_sum); } gctl::point3dc gkernel_tetra_gradient_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op) { int f,e; double Le,wf; double dv1,dv2; gctl::point3dc re; gctl::point3dc r_ijk[3]; gctl::point3dc face_sum(0.0, 0.0, 0.0); gctl::point3dc edge_sum(0.0, 0.0, 0.0); double L_ijk[3]; gctl::gravtet_para* gp = a_ele.att; int *v_order = a_ele.vec_order; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.vert[v_order[3*f]] - a_op; r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - a_op; r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - a_op; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_sum = face_sum + (gp->F[f] * r_ijk[0]) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.vert[v_order[e+3*f]], a_op); dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], a_op); re = 0.5*(*a_ele.vert[v_order[e+3*f]] + *a_ele.vert[v_order[(e+1)%3+3*f]]) - a_op; Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_sum = edge_sum + (gp->E[e+3*f] * re) * Le; } } gctl::point3dc out_p = 1.0e+8*GCTL_G0*(face_sum - edge_sum); out_p.z *= -1.0; // 重力正演中通常z方向取垂直向下为正方向 return out_p; } gctl::tensor gkernel_tetra_tensor_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op) { int f,e; double Le,wf; double dv1,dv2; gctl::point3dc r_ijk[3]; gctl::tensor face_sum(0.0); gctl::tensor edge_sum(0.0); double L_ijk[3]; gctl::gravtet_para* gp = a_ele.att; int *v_order = a_ele.vec_order; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.vert[v_order[3*f]] - a_op; r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - a_op; r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - a_op; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_sum = face_sum + wf * gp->F[f]; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.vert[v_order[e+3*f]], a_op); dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], a_op); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_sum = edge_sum + Le * gp->E[e+3*f]; } } // 重力正演中通常z方向取垂直向下为正方向 gctl::tensor out_t = 1.0e+8*GCTL_G0*(face_sum - edge_sum); out_t[0][0] *= -1.0; out_t[0][1] *= -1.0; out_t[1][0] *= -1.0; out_t[1][1] *= -1.0; out_t[2][2] *= -1.0; return out_t; } double gkernel_tetra_potential_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; double face_sum, edge_sum; gctl::point3dc re, op_c; gctl::point3dc r_ijk[3]; gctl::point3dc face_tmp(0.0, 0.0, 0.0); gctl::point3dc edge_tmp(0.0, 0.0, 0.0); double L_ijk[3]; gctl::gravtet_para* gp = a_ele.att; op_c = a_op.s2c(); int *v_order = a_ele.vec_order; face_sum = edge_sum = 0.0; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.vert[v_order[3*f]] - op_c; r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - op_c; r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp = gp->F[f] * r_ijk[0]; face_sum = face_sum + dot(r_ijk[0], face_tmp) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.vert[v_order[e+3*f]], op_c); dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], op_c); re = 0.5*(*a_ele.vert[v_order[e+3*f]] + *a_ele.vert[v_order[(e+1)%3+3*f]]) - op_c; Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp = gp->E[e+3*f] * re; edge_sum = edge_sum + dot(re, edge_tmp) * Le; } } // 重力正演中通常负r方向为正方向 return -0.5e+8*GCTL_G0*(face_sum - edge_sum); } gctl::point3dc gkernel_tetra_gradient_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::point3dc face_tmp, edge_tmp; gctl::point3dc face_sum(0.0, 0.0, 0.0); gctl::point3dc edge_sum(0.0, 0.0, 0.0); gctl::tensor R; gctl::point3dc re; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravtet_para* gp = a_ele.att; R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi); R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][2] = 0.0; op_c = a_op.s2c(); int *v_order = a_ele.vec_order; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.vert[v_order[3*f]] - op_c; r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - op_c; r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp = gp->F[f] * r_ijk[0]; face_sum = face_sum + (R * face_tmp) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.vert[v_order[e+3*f]], op_c); dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], op_c); re = 0.5*(*a_ele.vert[v_order[e+3*f]] + *a_ele.vert[v_order[(e+1)%3+3*f]]) - op_c; Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp = gp->E[e+3*f] * re; edge_sum = edge_sum + (R * edge_tmp) * Le; } } gctl::point3dc out_p = 1.0e+8*GCTL_G0*(face_sum - edge_sum); out_p.x *= -1.0; // 重力正演中通常负r方向为正方向 return out_p; } gctl::tensor gkernel_tetra_tensor_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op) { int f,e; double Le,wf; double dv1,dv2; // 直角坐标系下观测点的位置 gctl::point3dc op_c; // 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已 gctl::tensor face_tmp, edge_tmp; gctl::tensor face_sum(0.0), edge_sum(0.0); // 这里我们需要完整的转换矩阵 gctl::tensor R, R_T; gctl::point3dc r_ijk[3]; double L_ijk[3]; gctl::gravtet_para* gp = a_ele.att; R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi); R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi); R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi); R[2][2] = 0.0; R_T = R.transpose(); op_c = a_op.s2c(); int *v_order = a_ele.vec_order; for (f = 0; f < 4; f++) { r_ijk[0] = *a_ele.vert[v_order[3*f]] - op_c; r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - op_c; r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - op_c; L_ijk[0] = r_ijk[0].module(); L_ijk[1] = r_ijk[1].module(); L_ijk[2] = r_ijk[2].module(); wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])), L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) + L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1])); face_tmp = gp->F[f] * R_T; face_sum = face_sum + (R * face_tmp) * wf; for (e = 0; e < 3; e++) { dv1 = distance(*a_ele.vert[v_order[e+3*f]], op_c); dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], op_c); Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f])); edge_tmp = gp->E[e+3*f] * R_T; edge_sum = edge_sum + (R * edge_tmp) * Le; } } // 重力正演中通常负r方向为正方向 gctl::tensor out_t = 1.0e+8*GCTL_G0*(face_sum - edge_sum); out_t[0][0] *= -1.0; out_t[1][2] *= -1.0; out_t[2][1] *= -1.0; out_t[1][1] *= -1.0; out_t[2][2] *= -1.0; return out_t; }