gctl_potential/lib/potential/gkernel_tesseroid.cpp
2024-09-10 19:56:41 +08:00

547 lines
17 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "gkernel_tesseroid.h"
#ifdef GCTL_POTENTIAL_TESS
extern "C"
{
#include "tess/glq.h"
#include "tess/constants.h"
#include "tess/geometry.h"
#include "tess/grav_tess.h"
}
typedef void (*gkernel_tess_ptr)(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose);
void gkernel_tesseroid_pot(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose);
void gkernel_tesseroid_vr(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose);
void gkernel_tesseroid_vrp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose);
void gkernel_tesseroid_vrt(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose);
void gkernel_tesseroid_vrr(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose);
void gctl::gkernel(matrix<double> &out_kernel, const array<tesseroid> &ele,
const array<point3ds> &ops, gravitational_field_type_e comp_id, verbose_type_e verbose)
{
gkernel_tess_ptr tesseroid_kernel;
switch (comp_id)
{
case GravPot:
tesseroid_kernel = gkernel_tesseroid_pot;
break;
case Vz:
tesseroid_kernel = gkernel_tesseroid_vr;
break;
case Tzx:
tesseroid_kernel = gkernel_tesseroid_vrp;
break;
case Tzy:
tesseroid_kernel = gkernel_tesseroid_vrt;
break;
case Tzz:
tesseroid_kernel = gkernel_tesseroid_vrr;
break;
default:
tesseroid_kernel = gkernel_tesseroid_vr;
break;
}
return tesseroid_kernel(out_kernel, ele, ops, verbose);
}
typedef void (*gobser_tess_ptr)(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tesseroid_pot(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tesseroid_vr(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tesseroid_vrp(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tesseroid_vrt(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tesseroid_vrr(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gctl::gobser(array<double> &out_obs, const array<tesseroid> &ele, const array<point3ds> &ops,
const array<double> &rho, gravitational_field_type_e comp_id, verbose_type_e verbose)
{
gobser_tess_ptr tesseroid_obser;
switch (comp_id)
{
case GravPot:
tesseroid_obser = gobser_tesseroid_pot;
break;
case Vz:
tesseroid_obser = gobser_tesseroid_vr;
break;
case Tzx:
tesseroid_obser = gobser_tesseroid_vrp;
break;
case Tzy:
tesseroid_obser = gobser_tesseroid_vrt;
break;
case Tzz:
tesseroid_obser = gobser_tesseroid_vrr;
break;
default:
tesseroid_obser = gobser_tesseroid_vr;
break;
}
return tesseroid_obser(out_obs, ele, ops, rho, verbose);
}
// 以下是具体的实现
void gkernel_tesseroid_pot(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(e_size, "gkernel_pot");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0; // unit density
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_kernel[i][j] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_pot, TESSEROID_GZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
void gkernel_tesseroid_vr(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(e_size, "gkernel_vr");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0; // unit density
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_kernel[i][j] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_gz, TESSEROID_GZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
void gkernel_tesseroid_vrp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(e_size, "gkernel_vrp");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0; // unit density
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_kernel[i][j] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_gyz, TESSEROID_GYZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
void gkernel_tesseroid_vrt(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(e_size, "gkernel_vrt");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0; // unit density
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_kernel[i][j] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_gxz, TESSEROID_GXZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
void gkernel_tesseroid_vrr(gctl::matrix<double> &out_kernel, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(e_size, "gkernel_vrr");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0; // unit density
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_kernel[i][j] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_gzz, TESSEROID_GZZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
void gobser_tesseroid_pot(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(o_size, "gobser_pot");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0*rho[j];
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] += calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_gz, TESSEROID_GZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
void gobser_tesseroid_vr(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(o_size, "gobser_vr");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0*rho[j];
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] += calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_gz, TESSEROID_GZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
void gobser_tesseroid_vrp(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(o_size, "gobser_vrp");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0*rho[j];
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] += calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_gyz, TESSEROID_GYZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
void gobser_tesseroid_vrt(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(o_size, "gobser_vrt");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0*rho[j];
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] += calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_gxz, TESSEROID_GXZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
void gobser_tesseroid_vrr(gctl::array<double> &out_obs, const gctl::array<gctl::tesseroid> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
TESSEROID tess;
GLQ *glqlon, *glqlat, *glqr;
glqlon = glq_new(2, -1, 1); // 暂时固定使用2阶高斯积分
glqlat = glq_new(2, -1, 1);
glqr = glq_new(2, -1, 1);
gctl::progress_bar bar(o_size, "gobser_vrr");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
tess.density = 1000.0*rho[j];
tess.w = ele[j].dl->lon;
tess.e = ele[j].ur->lon;
tess.s = ele[j].dl->lat;
tess.n = ele[j].ur->lat;
tess.r1 = ele[j].dl->rad;
tess.r2 = ele[j].ur->rad;
//#pragma omp parallel for private(i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] += calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad,
glqlon, glqlat, glqr, tess_gzz, TESSEROID_GZZ_SIZE_RATIO);
}
}
glq_free(glqlon);
glq_free(glqlat);
glq_free(glqr);
return;
}
#endif // GCTL_POTENTIAL_TESS