gctl_potential/lib/potential/gkernel_tetrahedron.cpp
2024-09-10 19:56:41 +08:00

1223 lines
37 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "gkernel_tetrahedron.h"
using namespace gctl::geometry3d;
void gctl::callink_gravity_para(array<grav_tetrahedron> &in_tet, array<gravtet_para> &out_para)
{
point3dc v1, v2, v3, nf;
out_para.resize(in_tet.size());
for (int i = 0; i < in_tet.size(); ++i)
{
if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr ||
in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr)
{
throw runtime_error("Invalid vertex pointer. From callink_gravity_para(...)");
}
for (int f = 0; f < 4; ++f)
{
v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0);
v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0);
nf = cross(v1, v2).normal();
out_para[i].F[f] = kron(nf, nf);
for (int e = 0; e < 3; ++e)
{
v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e);
out_para[i].edglen[e+f*3] = v3.module();
out_para[i].E[e+f*3] = kron(nf, cross(v3, nf).normal());
}
}
in_tet[i].att = out_para.get(i);
}
return;
}
typedef void (*gkernel_tetra_ptr)(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_pot(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vx(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vy(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vz(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vxx(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vxy(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vxz(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vyy(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vyz(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vzz(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose);
/**
* @brief Integrated callback function of the gravitational kernel of a tetrahedron element
*
* @param out_kernel The output kernel
* @param[in] ele The tetrahedron elements
* @param[in] obsp The observation points
* @param[in] comp_id The component identifier
* @param[in] verbose The verbose level
*/
void gctl::gkernel(matrix<double> &out_kernel, const array<grav_tetrahedron> &ele,
const array<point3dc> &obsp, gravitational_field_type_e comp_id, verbose_type_e verbose)
{
gkernel_tetra_ptr tetra_kernel;
switch (comp_id)
{
case GravPot:
tetra_kernel = gkernel_tetrahedron_pot;
break;
case Vx:
tetra_kernel = gkernel_tetrahedron_vx;
break;
case Vy:
tetra_kernel = gkernel_tetrahedron_vy;
break;
case Vz:
tetra_kernel = gkernel_tetrahedron_vz;
break;
case Txx:
tetra_kernel = gkernel_tetrahedron_vxx;
break;
case Txy:
tetra_kernel = gkernel_tetrahedron_vxy;
break;
case Txz:
tetra_kernel = gkernel_tetrahedron_vxz;
break;
case Tyx:
tetra_kernel = gkernel_tetrahedron_vxy;
break;
case Tyy:
tetra_kernel = gkernel_tetrahedron_vyy;
break;
case Tyz:
tetra_kernel = gkernel_tetrahedron_vyz;
break;
case Tzx:
tetra_kernel = gkernel_tetrahedron_vxz;
break;
case Tzy:
tetra_kernel = gkernel_tetrahedron_vyz;
break;
case Tzz:
tetra_kernel = gkernel_tetrahedron_vzz;
break;
default:
tetra_kernel = gkernel_tetrahedron_vz;
break;
}
return tetra_kernel(out_kernel, ele, obsp, verbose);
}
typedef void (*gkernel_tetra_ptr_sph)(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_pot(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vr(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vt(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vrr(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vrt(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vrp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vtt(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vtp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
void gkernel_tetrahedron_vpp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose);
/**
* @brief Integrated callback function of the gravitational kernel of a tetrahedron element
*
* @param out_kernel The output kernel
* @param[in] ele The tetrahedron elements
* @param[in] obsp The observation points
* @param[in] comp_id The component identifier
* @param[in] verbose The verbose level
*/
void gctl::gkernel(matrix<double> &out_kernel, const array<grav_tetrahedron> &ele,
const array<point3ds> &obsp, gravitational_field_type_e comp_id, verbose_type_e verbose)
{
gkernel_tetra_ptr_sph tetra_kernel;
switch (comp_id)
{
case GravPot:
tetra_kernel = gkernel_tetrahedron_pot;
break;
case Vz:
tetra_kernel = gkernel_tetrahedron_vr;
break;
case Vy:
tetra_kernel = gkernel_tetrahedron_vt;
break;
case Vx:
tetra_kernel = gkernel_tetrahedron_vp;
break;
case Tzz:
tetra_kernel = gkernel_tetrahedron_vrr;
break;
case Tzy:
tetra_kernel = gkernel_tetrahedron_vrt;
break;
case Tzx:
tetra_kernel = gkernel_tetrahedron_vrp;
break;
case Tyz:
tetra_kernel = gkernel_tetrahedron_vrt;
break;
case Tyy:
tetra_kernel = gkernel_tetrahedron_vtt;
break;
case Tyx:
tetra_kernel = gkernel_tetrahedron_vtp;
break;
case Txz:
tetra_kernel = gkernel_tetrahedron_vrp;
break;
case Txy:
tetra_kernel = gkernel_tetrahedron_vtp;
break;
case Txx:
tetra_kernel = gkernel_tetrahedron_vpp;
break;
default:
tetra_kernel = gkernel_tetrahedron_vr;
break;
}
return tetra_kernel(out_kernel, ele, obsp, verbose);
}
double gkernel_tetra_potential_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op);
gctl::point3dc gkernel_tetra_gradient_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op);
gctl::tensor gkernel_tetra_tensor_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op);
double gkernel_tetra_potential_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op);
gctl::point3dc gkernel_tetra_gradient_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op);
gctl::tensor gkernel_tetra_tensor_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op);
void gkernel_tetrahedron_pot(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_potential");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_potential_sig(ele[j], obsp[i]);
}
}
return;
}
void gkernel_tetrahedron_vx(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vx");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_gradient_sig(ele[j], obsp[i]).x;
}
}
return;
}
void gkernel_tetrahedron_vy(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vy");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_gradient_sig(ele[j], obsp[i]).y;
}
}
return;
}
void gkernel_tetrahedron_vz(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vz");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_gradient_sig(ele[j], obsp[i]).z;
}
}
return;
}
void gkernel_tetrahedron_vxx(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vxx");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(0, 0);
}
}
return;
}
void gkernel_tetrahedron_vxy(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vxy");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(0, 1);
}
}
return;
}
void gkernel_tetrahedron_vxz(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vxz");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(0, 2);
}
}
return;
}
void gkernel_tetrahedron_vyy(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vyy");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(1, 1);
}
}
return;
}
void gkernel_tetrahedron_vyz(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vyz");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(1, 2);
}
}
return;
}
void gkernel_tetrahedron_vzz(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3dc> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vzz");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig(ele[j], obsp[i]).at(2, 2);
}
}
return;
}
void gkernel_tetrahedron_pot(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_potential");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_potential_sig_sph(ele[j], obsp[i]);
}
}
return;
}
void gkernel_tetrahedron_vr(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vr");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_gradient_sig_sph(ele[j], obsp[i]).x;
}
}
return;
}
void gkernel_tetrahedron_vt(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vt");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_gradient_sig_sph(ele[j], obsp[i]).y;
}
}
return;
}
void gkernel_tetrahedron_vp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vp");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_gradient_sig_sph(ele[j], obsp[i]).z;
}
}
return;
}
void gkernel_tetrahedron_vrr(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vrr");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(0, 0);
}
}
return;
}
void gkernel_tetrahedron_vrt(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vrt");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(0, 1);
}
}
return;
}
void gkernel_tetrahedron_vrp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vrp");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(0, 2);
}
}
return;
}
void gkernel_tetrahedron_vtt(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vtt");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(1, 1);
}
}
return;
}
void gkernel_tetrahedron_vtp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vtp");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(1, 2);
}
}
return;
}
void gkernel_tetrahedron_vpp(gctl::matrix<double> &out_kernel, const gctl::array<gctl::grav_tetrahedron> &ele,
const gctl::array<gctl::point3ds> &obsp, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = ele.size();
out_kernel.resize(o_size, e_size);
gctl::progress_bar bar(o_size, "gkernel_vpp");
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
#pragma omp parallel for private (j) schedule(guided)
for (j = 0; j < e_size; j++)
{
out_kernel[i][j] = gkernel_tetra_tensor_sig_sph(ele[j], obsp[i]).at(2, 2);
}
}
return;
}
void gctl::gobser(array<double> &out_obs, const array<grav_tetrahedron> &ele,
const array<point3dc> &ops, const array<double> &rho, verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
gctl::progress_bar bar(e_size, "gobser_potential");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] += gkernel_tetra_potential_sig(ele[j], ops[i]) * rho[j];
}
}
return;
}
void gctl::gobser(array<point3dc> &out_obs, const array<grav_tetrahedron> &ele,
const array<point3dc> &ops, const array<double> &rho, verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0));
gctl::progress_bar bar(e_size, "gobser_gradient");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] = out_obs[i] + gkernel_tetra_gradient_sig(ele[j], ops[i]) * rho[j];
}
}
return;
}
void gctl::gobser(array<tensor> &out_obs, const array<grav_tetrahedron> &ele,
const array<point3dc> &ops, const array<double> &rho, verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, tensor(0.0));
gctl::progress_bar bar(e_size, "gobser_tensor");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] = out_obs[i] + gkernel_tetra_tensor_sig(ele[j], ops[i]) * rho[j];
}
}
return;
}
void gctl::gobser(array<double> &out_obs, const array<grav_tetrahedron> &ele,
const array<point3ds> &ops, const array<double> &rho, verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
gctl::progress_bar bar(e_size, "gobser_potential");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] += gkernel_tetra_potential_sig_sph(ele[j], ops[i]) * rho[j];
}
}
return;
}
void gctl::gobser(array<point3dc> &out_obs, const array<grav_tetrahedron> &ele,
const array<point3ds> &ops, const array<double> &rho, verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0));
gctl::progress_bar bar(e_size, "gobser_gradient");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] = out_obs[i] + gkernel_tetra_gradient_sig_sph(ele[j], ops[i]) * rho[j];
}
}
return;
}
void gctl::gobser(array<tensor> &out_obs, const array<grav_tetrahedron> &ele,
const array<point3ds> &ops, const array<double> &rho, verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, tensor(0.0));
gctl::progress_bar bar(e_size, "gobser_tensor");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] = out_obs[i] + gkernel_tetra_tensor_sig_sph(ele[j], ops[i]) * rho[j];
}
}
return;
}
// define individual algorithm here
double gkernel_tetra_potential_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
double face_sum, edge_sum;
gctl::point3dc re;
gctl::point3dc r_ijk[3];
gctl::point3dc face_tmp(0.0, 0.0, 0.0);
gctl::point3dc edge_tmp(0.0, 0.0, 0.0);
double L_ijk[3];
gctl::gravtet_para* gp = a_ele.att;
int *v_order = a_ele.vec_order;
face_sum = edge_sum = 0.0;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.vert[v_order[3*f]] - a_op;
r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - a_op;
r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - a_op;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_tmp = gp->F[f] * r_ijk[0];
face_sum += dot(r_ijk[0], face_tmp) * wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.vert[v_order[e+3*f]], a_op);
dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], a_op);
re = 0.5*(*a_ele.vert[v_order[e+3*f]] + *a_ele.vert[v_order[(e+1)%3+3*f]]) - a_op;
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_tmp = gp->E[e+3*f] * re;
edge_sum += dot(re, edge_tmp) * Le;
}
}
// 重力正演中通常z方向取垂直向下为正方向
return -0.5e+8*GCTL_G0*(face_sum - edge_sum);
}
gctl::point3dc gkernel_tetra_gradient_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
gctl::point3dc re;
gctl::point3dc r_ijk[3];
gctl::point3dc face_sum(0.0, 0.0, 0.0);
gctl::point3dc edge_sum(0.0, 0.0, 0.0);
double L_ijk[3];
gctl::gravtet_para* gp = a_ele.att;
int *v_order = a_ele.vec_order;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.vert[v_order[3*f]] - a_op;
r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - a_op;
r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - a_op;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_sum = face_sum + (gp->F[f] * r_ijk[0]) * wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.vert[v_order[e+3*f]], a_op);
dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], a_op);
re = 0.5*(*a_ele.vert[v_order[e+3*f]] + *a_ele.vert[v_order[(e+1)%3+3*f]]) - a_op;
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_sum = edge_sum + (gp->E[e+3*f] * re) * Le;
}
}
gctl::point3dc out_p = 1.0e+8*GCTL_G0*(face_sum - edge_sum);
out_p.z *= -1.0; // 重力正演中通常z方向取垂直向下为正方向
return out_p;
}
gctl::tensor gkernel_tetra_tensor_sig(const gctl::grav_tetrahedron &a_ele, const gctl::point3dc &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
gctl::point3dc r_ijk[3];
gctl::tensor face_sum(0.0);
gctl::tensor edge_sum(0.0);
double L_ijk[3];
gctl::gravtet_para* gp = a_ele.att;
int *v_order = a_ele.vec_order;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.vert[v_order[3*f]] - a_op;
r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - a_op;
r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - a_op;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_sum = face_sum + wf * gp->F[f];
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.vert[v_order[e+3*f]], a_op);
dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], a_op);
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_sum = edge_sum + Le * gp->E[e+3*f];
}
}
// 重力正演中通常z方向取垂直向下为正方向
gctl::tensor out_t = 1.0e+8*GCTL_G0*(face_sum - edge_sum);
out_t[0][0] *= -1.0;
out_t[0][1] *= -1.0;
out_t[1][0] *= -1.0;
out_t[1][1] *= -1.0;
out_t[2][2] *= -1.0;
return out_t;
}
double gkernel_tetra_potential_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
double face_sum, edge_sum;
gctl::point3dc re, op_c;
gctl::point3dc r_ijk[3];
gctl::point3dc face_tmp(0.0, 0.0, 0.0);
gctl::point3dc edge_tmp(0.0, 0.0, 0.0);
double L_ijk[3];
gctl::gravtet_para* gp = a_ele.att;
op_c = a_op.s2c();
int *v_order = a_ele.vec_order;
face_sum = edge_sum = 0.0;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.vert[v_order[3*f]] - op_c;
r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - op_c;
r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - op_c;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_tmp = gp->F[f] * r_ijk[0];
face_sum = face_sum + dot(r_ijk[0], face_tmp) * wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.vert[v_order[e+3*f]], op_c);
dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], op_c);
re = 0.5*(*a_ele.vert[v_order[e+3*f]] + *a_ele.vert[v_order[(e+1)%3+3*f]]) - op_c;
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_tmp = gp->E[e+3*f] * re;
edge_sum = edge_sum + dot(re, edge_tmp) * Le;
}
}
// 重力正演中通常负r方向为正方向
return -0.5e+8*GCTL_G0*(face_sum - edge_sum);
}
gctl::point3dc gkernel_tetra_gradient_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
// 直角坐标系下观测点的位置
gctl::point3dc op_c;
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
gctl::point3dc face_tmp, edge_tmp;
gctl::point3dc face_sum(0.0, 0.0, 0.0);
gctl::point3dc edge_sum(0.0, 0.0, 0.0);
gctl::tensor R;
gctl::point3dc re;
gctl::point3dc r_ijk[3];
double L_ijk[3];
gctl::gravtet_para* gp = a_ele.att;
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][2] = 0.0;
op_c = a_op.s2c();
int *v_order = a_ele.vec_order;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.vert[v_order[3*f]] - op_c;
r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - op_c;
r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - op_c;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_tmp = gp->F[f] * r_ijk[0];
face_sum = face_sum + (R * face_tmp) * wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.vert[v_order[e+3*f]], op_c);
dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], op_c);
re = 0.5*(*a_ele.vert[v_order[e+3*f]] + *a_ele.vert[v_order[(e+1)%3+3*f]]) - op_c;
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_tmp = gp->E[e+3*f] * re;
edge_sum = edge_sum + (R * edge_tmp) * Le;
}
}
gctl::point3dc out_p = 1.0e+8*GCTL_G0*(face_sum - edge_sum);
out_p.x *= -1.0; // 重力正演中通常负r方向为正方向
return out_p;
}
gctl::tensor gkernel_tetra_tensor_sig_sph(const gctl::grav_tetrahedron &a_ele, const gctl::point3ds &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
// 直角坐标系下观测点的位置
gctl::point3dc op_c;
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
gctl::tensor face_tmp, edge_tmp;
gctl::tensor face_sum(0.0), edge_sum(0.0);
// 这里我们需要完整的转换矩阵
gctl::tensor R, R_T;
gctl::point3dc r_ijk[3];
double L_ijk[3];
gctl::gravtet_para* gp = a_ele.att;
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][2] = 0.0;
R_T = R.transpose();
op_c = a_op.s2c();
int *v_order = a_ele.vec_order;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.vert[v_order[3*f]] - op_c;
r_ijk[1] = *a_ele.vert[v_order[3*f+1]] - op_c;
r_ijk[2] = *a_ele.vert[v_order[3*f+2]] - op_c;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_tmp = gp->F[f] * R_T;
face_sum = face_sum + (R * face_tmp) * wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.vert[v_order[e+3*f]], op_c);
dv2 = distance(*a_ele.vert[v_order[(e+1)%3+3*f]], op_c);
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_tmp = gp->E[e+3*f] * R_T;
edge_sum = edge_sum + (R * edge_tmp) * Le;
}
}
// 重力正演中通常负r方向为正方向
gctl::tensor out_t = 1.0e+8*GCTL_G0*(face_sum - edge_sum);
out_t[0][0] *= -1.0;
out_t[1][2] *= -1.0;
out_t[2][1] *= -1.0;
out_t[1][1] *= -1.0;
out_t[2][2] *= -1.0;
return out_t;
}