1704 lines
61 KiB
C++
1704 lines
61 KiB
C++
/********************************************************
|
|
* ██████╗ ██████╗████████╗██╗
|
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
|
* ██║ ███╗██║ ██║ ██║
|
|
* ██║ ██║██║ ██║ ██║
|
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
|
* Geophysical Computational Tools & Library (GCTL)
|
|
*
|
|
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
|
|
*
|
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, either version 2
|
|
* of the License, or (at your option) any later version. You should have
|
|
* received a copy of the GNU Lesser General Public License along with this
|
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
|
* the GCTL, please consider the option to obtain a commercial license for a
|
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
|
* to include some description of your company and the realm of its activities.
|
|
* Also add information on how to contact you by electronic and paper mail.
|
|
******************************************************/
|
|
|
|
#include "gkernel_tricone.h"
|
|
#include "cmath"
|
|
|
|
using namespace gctl::geometry3d;
|
|
|
|
/*
|
|
void gctl::gravcone_gji::initialize_tensors()
|
|
{
|
|
point3dc v1, v2, v3, nf, ne;
|
|
point3dc faceVec, faceVec_rj;
|
|
point3dc edgeVec_j2, edgeVec_j2_rj;
|
|
point3dc edgeVec_23, edgeVec_23_rj;
|
|
point3dc edgeVec_3j, edgeVec_3j_rj;
|
|
point3dc edgeVec_2j, edgeVec_2j_rj;
|
|
point3dc edgeVec_j3, edgeVec_j3_rj;
|
|
point3dc rjNor;
|
|
|
|
if (vert[0] == nullptr || vert[1] == nullptr ||
|
|
vert[2] == nullptr || vert[3] == nullptr)
|
|
{
|
|
std::string err_str = "Null pointer found. From void gctl::grav_triangle::initialize_tensors()";
|
|
throw runtime_error(err_str);
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
v1 = *vert[cone_order[1+i*3]] - *vert[cone_order[i*3]];
|
|
v2 = *vert[cone_order[2+i*3]] - *vert[cone_order[i*3]];
|
|
nf = cross(v1, v2).normal();
|
|
nface[i] = nf;
|
|
F[i] = kron(nf, nf);
|
|
|
|
for (int j = 0; j < 3; j++)
|
|
{
|
|
edglen[j+i*3] = distance(*vert[cone_order[j+i*3]], *vert[cone_order[(j+1)%3+i*3]]);
|
|
|
|
v3 = *vert[cone_order[(j+1)%3+i*3]] - *vert[cone_order[j+i*3]];
|
|
ne = cross(v3, nf).normal();
|
|
nedge[j+i*3] = ne;
|
|
E[j+i*3] = kron(nf, ne);
|
|
}
|
|
}
|
|
|
|
for (int e = 0; e < 3; e++)
|
|
{
|
|
// 半径的单位矢量
|
|
rjNor = (*vert[e] - *vert[3]).normal();
|
|
|
|
//计算顶面的情况
|
|
faceVec = cross(*vert[(e+1)%3] - *vert[e], *vert[(e+2)%3] - *vert[e]);
|
|
faceVec_rj = cross(rjNor, *vert[(e+1)%3] - *vert[(e+2)%3]);
|
|
nf_rj[e] = nr_dr(faceVec, faceVec_rj);
|
|
|
|
edgeVec_j2 = cross(*vert[(e+1)%3] - *vert[e], faceVec);
|
|
edgeVec_j2_rj = cross(*vert[(e+1)%3] - *vert[e], faceVec_rj) - cross(rjNor, faceVec);
|
|
nj2_rj[e] = nr_dr(edgeVec_j2, edgeVec_j2_rj);
|
|
|
|
edgeVec_23 = cross(*vert[(e+2)%3] - *vert[(e+1)%3], faceVec);
|
|
edgeVec_23_rj = cross(*vert[(e+2)%3] - *vert[(e+1)%3], faceVec_rj);
|
|
n23_rj[e] = nr_dr(edgeVec_23, edgeVec_23_rj);
|
|
|
|
edgeVec_3j = cross(*vert[e] - *vert[(e+2)%3], faceVec);
|
|
edgeVec_3j_rj = cross(*vert[e] - *vert[(e+2)%3], faceVec_rj) + cross(rjNor, faceVec);
|
|
n3j_rj[e] = nr_dr(edgeVec_3j, edgeVec_3j_rj);
|
|
|
|
//计算右侧面的情况
|
|
faceVec = cross(*vert[(e+1)%3], *vert[e]);
|
|
faceVec_rj = cross(*vert[(e+1)%3], rjNor);
|
|
|
|
edgeVec_2j = cross(*vert[e] - *vert[(e+1)%3], faceVec);
|
|
edgeVec_2j_rj = cross(rjNor, faceVec);
|
|
n2j_rj[e] = nr_dr(edgeVec_2j, edgeVec_2j_rj);
|
|
|
|
//计算左侧面的情况
|
|
faceVec = cross(*vert[e], *vert[(e+2)%3]);
|
|
faceVec_rj = cross(rjNor, *vert[(e+2)%3]);
|
|
|
|
edgeVec_j3 = cross(*vert[(e+2)%3] - *vert[e], faceVec);
|
|
edgeVec_j3_rj = cross(faceVec, rjNor);
|
|
nj3_rj[e] = nr_dr(edgeVec_j3, edgeVec_j3_rj);
|
|
}
|
|
|
|
return;
|
|
}
|
|
*/
|
|
|
|
void gctl::callink_gravity_para(array<gravcone_gji> &in_cone, array<gravcone_para_gji> &out_para)
|
|
{
|
|
point3dc v1, v2, v3, ne, nf;
|
|
point3dc faceVec, faceVec_rj;
|
|
point3dc edgeVec_j2, edgeVec_j2_rj;
|
|
point3dc edgeVec_23, edgeVec_23_rj;
|
|
point3dc edgeVec_3j, edgeVec_3j_rj;
|
|
point3dc edgeVec_2j, edgeVec_2j_rj;
|
|
point3dc edgeVec_j3, edgeVec_j3_rj;
|
|
point3dc rjNor;
|
|
|
|
out_para.resize(in_cone.size());
|
|
for (int i = 0; i < in_cone.size(); ++i)
|
|
{
|
|
if (in_cone[i].vert[0] == nullptr || in_cone[i].vert[1] == nullptr ||
|
|
in_cone[i].vert[2] == nullptr || in_cone[i].vert[3] == nullptr)
|
|
{
|
|
throw runtime_error("Invalid vertex pointer. From callink_gravity_para(...)");
|
|
}
|
|
|
|
for (int f = 0; f < 4; ++f)
|
|
{
|
|
v1 = *in_cone[i].fget(f, 1) - *in_cone[i].fget(f, 0);
|
|
v2 = *in_cone[i].fget(f, 2) - *in_cone[i].fget(f, 0);
|
|
nf = cross(v1, v2).normal();
|
|
out_para[i].nface[f] = nf;
|
|
out_para[i].F[f] = kron(nf, nf);
|
|
|
|
for (int e = 0; e < 3; ++e)
|
|
{
|
|
v3 = *in_cone[i].fget(f, (e+1)%3) - *in_cone[i].fget(f, e);
|
|
out_para[i].edglen[e+f*3] = v3.module();
|
|
|
|
ne = cross(v3, nf).normal();
|
|
out_para[i].nedge[e+f*3] = ne;
|
|
out_para[i].E[e+f*3] = kron(nf, ne);
|
|
}
|
|
|
|
for (int e = 0; e < 3; ++e)
|
|
{
|
|
// 半径的单位矢量
|
|
rjNor = (*in_cone[i].vert[e] - *in_cone[i].vert[3]).normal();
|
|
|
|
//计算顶面的情况
|
|
faceVec = cross(*in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[e],
|
|
*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[e]);
|
|
faceVec_rj = cross(rjNor, *in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[(e+2)%3]);
|
|
out_para[i].nf_rj[e] = nr_dr(faceVec, faceVec_rj);
|
|
|
|
edgeVec_j2 = cross(*in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[e], faceVec);
|
|
edgeVec_j2_rj = cross(*in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[e], faceVec_rj)
|
|
- cross(rjNor, faceVec);
|
|
out_para[i].nj2_rj[e] = nr_dr(edgeVec_j2, edgeVec_j2_rj);
|
|
|
|
edgeVec_23 = cross(*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[(e+1)%3], faceVec);
|
|
edgeVec_23_rj = cross(*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[(e+1)%3], faceVec_rj);
|
|
out_para[i].n23_rj[e] = nr_dr(edgeVec_23, edgeVec_23_rj);
|
|
|
|
edgeVec_3j = cross(*in_cone[i].vert[e] - *in_cone[i].vert[(e+2)%3], faceVec);
|
|
edgeVec_3j_rj = cross(*in_cone[i].vert[e] - *in_cone[i].vert[(e+2)%3], faceVec_rj)
|
|
+ cross(rjNor, faceVec);
|
|
out_para[i].n3j_rj[e] = nr_dr(edgeVec_3j, edgeVec_3j_rj);
|
|
|
|
//计算右侧面的情况
|
|
faceVec = cross(*in_cone[i].vert[(e+1)%3], *in_cone[i].vert[e]);
|
|
faceVec_rj = cross(*in_cone[i].vert[(e+1)%3], rjNor);
|
|
|
|
edgeVec_2j = cross(*in_cone[i].vert[e] - *in_cone[i].vert[(e+1)%3], faceVec);
|
|
edgeVec_2j_rj = cross(rjNor, faceVec);
|
|
out_para[i].n2j_rj[e] = nr_dr(edgeVec_2j, edgeVec_2j_rj);
|
|
|
|
//计算左侧面的情况
|
|
faceVec = cross(*in_cone[i].vert[e], *in_cone[i].vert[(e+2)%3]);
|
|
faceVec_rj = cross(rjNor, *in_cone[i].vert[(e+2)%3]);
|
|
|
|
edgeVec_j3 = cross(*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[e], faceVec);
|
|
edgeVec_j3_rj = cross(faceVec, rjNor);
|
|
out_para[i].nj3_rj[e] = nr_dr(edgeVec_j3, edgeVec_j3_rj);
|
|
}
|
|
}
|
|
|
|
in_cone[i].att = out_para.get(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
typedef void (*gobser_mGrad_tricone)(gctl::array<double> &out_mGrad,
|
|
const gctl::array<std::vector<gctl::gravcone_gji*> > &vert_neighList,
|
|
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
|
|
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
|
|
double ang_limit, gctl::verbose_type_e verbose);
|
|
|
|
void gobser_mGrad_tricone_vr(gctl::array<double> &out_mGrad,
|
|
const gctl::array<std::vector<gctl::gravcone_gji*> > &vert_neighList,
|
|
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
|
|
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
|
|
double ang_limit, gctl::verbose_type_e verbose);
|
|
void gobser_mGrad_tricone_vrp(gctl::array<double> &out_mGrad,
|
|
const gctl::array<std::vector<gctl::gravcone_gji*> > &vert_neighList,
|
|
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
|
|
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
|
|
double ang_limit, gctl::verbose_type_e verbose);
|
|
void gobser_mGrad_tricone_vrt(gctl::array<double> &out_mGrad,
|
|
const gctl::array<std::vector<gctl::gravcone_gji*> > &vert_neighList,
|
|
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
|
|
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
|
|
double ang_limit, gctl::verbose_type_e verbose);
|
|
void gobser_mGrad_tricone_vrr(gctl::array<double> &out_mGrad,
|
|
const gctl::array<std::vector<gctl::gravcone_gji*> > &vert_neighList,
|
|
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
|
|
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
|
|
double ang_limit, gctl::verbose_type_e verbose);
|
|
|
|
void gctl::gobser_model_gradient(array<double> &out_mGrad,
|
|
const array<std::vector<gravcone_gji*> > &vert_neighList,
|
|
const array<double> &obs_diff, const array<point3ds> &ops,
|
|
const array<double> &rho, const array<vertex3dc> *verts_ptr,
|
|
double ang_limit, gravitational_field_type_e comp_id, verbose_type_e verbose)
|
|
{
|
|
gobser_mGrad_tricone gobser_mGrad;
|
|
switch (comp_id)
|
|
{
|
|
case Vz:
|
|
gobser_mGrad = gobser_mGrad_tricone_vr;
|
|
break;
|
|
case Tzx:
|
|
gobser_mGrad = gobser_mGrad_tricone_vrp;
|
|
break;
|
|
case Tzy:
|
|
gobser_mGrad = gobser_mGrad_tricone_vrt;
|
|
break;
|
|
case Tzz:
|
|
gobser_mGrad = gobser_mGrad_tricone_vrr;
|
|
break;
|
|
default:
|
|
gobser_mGrad = gobser_mGrad_tricone_vr;
|
|
break;
|
|
}
|
|
return gobser_mGrad(out_mGrad, vert_neighList, obs_diff, ops, rho, verts_ptr, ang_limit, verbose);
|
|
}
|
|
|
|
double gobser_mGrad_tricone_vr_sig(const std::vector<gctl::gravcone_gji*> &a_list,
|
|
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho);
|
|
double gobser_mGrad_tricone_vrp_sig(const std::vector<gctl::gravcone_gji*> &a_list,
|
|
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho);
|
|
double gobser_mGrad_tricone_vrt_sig(const std::vector<gctl::gravcone_gji*> &a_list,
|
|
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho);
|
|
double gobser_mGrad_tricone_vrr_sig(const std::vector<gctl::gravcone_gji*> &a_list,
|
|
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho);
|
|
|
|
|
|
typedef void (*gobser_tri_cone_gji)(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
|
|
|
|
void gobser_tricone_gji_pot(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
|
|
void gobser_tricone_gji_vr(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
|
|
void gobser_tricone_gji_vrp(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
|
|
void gobser_tricone_gji_vrt(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
|
|
void gobser_tricone_gji_vrr(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
|
|
|
|
void gctl::gobser(array<double> &out_obs, const array<gravcone_gji> &ele, const array<point3ds> &ops,
|
|
const array<double> &rho, gravitational_field_type_e comp_id, verbose_type_e verbose)
|
|
{
|
|
gobser_tri_cone_gji tricone_obser;
|
|
switch (comp_id)
|
|
{
|
|
case GravPot:
|
|
tricone_obser = gobser_tricone_gji_pot;
|
|
case Vz:
|
|
tricone_obser = gobser_tricone_gji_vr;
|
|
break;
|
|
case Tzx:
|
|
tricone_obser = gobser_tricone_gji_vrp;
|
|
break;
|
|
case Tzy:
|
|
tricone_obser = gobser_tricone_gji_vrt;
|
|
break;
|
|
case Tzz:
|
|
tricone_obser = gobser_tricone_gji_vrr;
|
|
break;
|
|
default:
|
|
tricone_obser = gobser_tricone_gji_vr;
|
|
break;
|
|
}
|
|
return tricone_obser(out_obs, ele, ops, rho, verbose);
|
|
}
|
|
|
|
double gkernel_tricone_gji_pot_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op);
|
|
double gkernel_tricone_gji_vr_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op);
|
|
double gkernel_tricone_gji_vrp_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op);
|
|
double gkernel_tricone_gji_vrt_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op);
|
|
double gkernel_tricone_gji_vrr_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op);
|
|
|
|
// 以下是具体的实现
|
|
|
|
void gobser_mGrad_tricone_vr(gctl::array<double> &out_mGrad,
|
|
const gctl::array<std::vector<gctl::gravcone_gji*> > &vert_neighList,
|
|
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
|
|
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
|
|
double ang_limit, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int v_size = vert_neighList.size();
|
|
out_mGrad.resize(v_size, 0.0);
|
|
|
|
gctl::progress_bar bar(o_size, "gobser_mGrad_vr");
|
|
|
|
if (verts_ptr != nullptr && ang_limit > 0.0)
|
|
{
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed(i);
|
|
|
|
#pragma omp parallel for private (j) shared(i) schedule(guided)
|
|
for (j = 0; j < v_size; j++)
|
|
{
|
|
if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0)
|
|
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vr_sig(vert_neighList[j], j, ops[i], rho);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed(i);
|
|
|
|
#pragma omp parallel for private (j) shared(i) schedule(guided)
|
|
for (j = 0; j < v_size; j++)
|
|
{
|
|
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vr_sig(vert_neighList[j], j, ops[i], rho);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gobser_mGrad_tricone_vrp(gctl::array<double> &out_mGrad,
|
|
const gctl::array<std::vector<gctl::gravcone_gji*> > &vert_neighList,
|
|
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
|
|
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
|
|
double ang_limit, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int v_size = vert_neighList.size();
|
|
out_mGrad.resize(v_size, 0.0);
|
|
|
|
gctl::progress_bar bar(o_size, "gobser_mGrad_vrp");
|
|
|
|
if (verts_ptr != nullptr && ang_limit > 0.0)
|
|
{
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed(i);
|
|
|
|
#pragma omp parallel for private (j) shared(i) schedule(guided)
|
|
for (j = 0; j < v_size; j++)
|
|
{
|
|
if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0)
|
|
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrp_sig(vert_neighList[j], j, ops[i], rho);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed(i);
|
|
|
|
#pragma omp parallel for private (j) shared(i) schedule(guided)
|
|
for (j = 0; j < v_size; j++)
|
|
{
|
|
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrp_sig(vert_neighList[j], j, ops[i], rho);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gobser_mGrad_tricone_vrt(gctl::array<double> &out_mGrad,
|
|
const gctl::array<std::vector<gctl::gravcone_gji*> > &vert_neighList,
|
|
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
|
|
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
|
|
double ang_limit, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int v_size = vert_neighList.size();
|
|
out_mGrad.resize(v_size, 0.0);
|
|
|
|
gctl::progress_bar bar(o_size, "gobser_mGrad_vrt");
|
|
|
|
if (verts_ptr != nullptr && ang_limit > 0.0)
|
|
{
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed(i);
|
|
|
|
#pragma omp parallel for private (j) shared(i) schedule(guided)
|
|
for (j = 0; j < v_size; j++)
|
|
{
|
|
if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0)
|
|
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrt_sig(vert_neighList[j], j, ops[i], rho);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed(i);
|
|
|
|
#pragma omp parallel for private (j) shared(i) schedule(guided)
|
|
for (j = 0; j < v_size; j++)
|
|
{
|
|
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrt_sig(vert_neighList[j], j, ops[i], rho);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gobser_mGrad_tricone_vrr(gctl::array<double> &out_mGrad,
|
|
const gctl::array<std::vector<gctl::gravcone_gji*> > &vert_neighList,
|
|
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
|
|
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
|
|
double ang_limit, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int v_size = vert_neighList.size();
|
|
out_mGrad.resize(v_size, 0.0);
|
|
|
|
gctl::progress_bar bar(o_size, "gobser_mGrad_vrr");
|
|
|
|
if (verts_ptr != nullptr && ang_limit > 0.0)
|
|
{
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed(i);
|
|
|
|
#pragma omp parallel for private (j) shared(i) schedule(guided)
|
|
for (j = 0; j < v_size; j++)
|
|
{
|
|
if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0)
|
|
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrr_sig(vert_neighList[j], j, ops[i], rho);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed(i);
|
|
|
|
#pragma omp parallel for private (j) shared(i) schedule(guided)
|
|
for (j = 0; j < v_size; j++)
|
|
{
|
|
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrr_sig(vert_neighList[j], j, ops[i], rho);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
void gobser_tricone_gji_pot(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_pot");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) shared(j) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs.at(i) += gkernel_tricone_gji_pot_sig(ele[j], ops[i]) * rho[j];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gobser_tricone_gji_vr(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_vr");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) shared(j) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs.at(i) += gkernel_tricone_gji_vr_sig(ele[j], ops[i]) * rho[j];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gobser_tricone_gji_vrp(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_vrp");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) shared(j) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs.at(i) += gkernel_tricone_gji_vrp_sig(ele[j], ops[i]) * rho[j];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gobser_tricone_gji_vrt(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_vrt");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) shared(j) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs.at(i) += gkernel_tricone_gji_vrt_sig(ele[j], ops[i]) * rho[j];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gobser_tricone_gji_vrr(gctl::array<double> &out_obs, const gctl::array<gctl::gravcone_gji> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_vrr");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) shared(j) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs.at(i) += gkernel_tricone_gji_vrr_sig(ele[j], ops[i]) * rho[j];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
double gobser_mGrad_tricone_vr_sig(const std::vector<gctl::gravcone_gji*> &a_list,
|
|
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho)
|
|
{
|
|
int local_id;
|
|
double beta, beta_rj, alpha, alpha_rj;
|
|
double a_rj, e_rj, Le_rj, Le;
|
|
double wf, wf_rj;
|
|
double L_j23;
|
|
double L_ijk[3];
|
|
gctl::point3dc op_c;
|
|
gctl::point3dc r_j23[3];
|
|
gctl::point3dc r_j23_side[3];
|
|
gctl::point3dc r_ijk[3];
|
|
gctl::point3dc R;
|
|
gctl::point3dc face_temp, edge_temp;
|
|
gctl::point3dc re;
|
|
gctl::gravcone_gji* curr_tri;
|
|
gctl::gravcone_para_gji* gp;
|
|
|
|
R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
op_c = a_op.s2c();
|
|
|
|
double point_sum = 0.0;
|
|
for (int j = 0; j < a_list.size(); j++)
|
|
{
|
|
curr_tri = a_list.at(j);
|
|
gp = curr_tri->att;
|
|
// 找到顶点在某个三棱锥中的局部排序
|
|
for (int t = 0; t < 3; t++)
|
|
{
|
|
if (vert_id == curr_tri->vert[t]->id)
|
|
{
|
|
local_id = t;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//先处理顶面
|
|
r_j23[0] = *curr_tri->vert[local_id];
|
|
r_j23[1] = *curr_tri->vert[(local_id+1)%3];
|
|
r_j23[2] = *curr_tri->vert[(local_id+2)%3];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0]
|
|
r_ijk[1] = r_j23[1] - op_c;
|
|
r_ijk[2] = r_j23[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0], cross(r_ijk[1], r_ijk[2]));
|
|
beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1], r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2], r_ijk[0]) + L_ijk[2]*dot(r_ijk[0], r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1], r_ijk[2]))*dot(r_j23[0], r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1], r_j23[0])/L_j23;
|
|
|
|
wf = 2*atan2(beta, alpha);
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
|
|
//计算面与边的乘积
|
|
face_temp = (wf*dot(gp->nface[0], r_ijk[0])*gp->nf_rj[local_id] +
|
|
wf*dot(gp->nf_rj[local_id], r_ijk[0])*gp->nface[0] +
|
|
wf*dot(gp->nface[0], r_j23[0].normal())*gp->nface[0] +
|
|
wf_rj*dot(gp->nface[0], r_ijk[0])*gp->nface[0]);
|
|
|
|
//观测点到右侧边
|
|
re = r_j23[0] - op_c;
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23[0], r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23[0], r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23);
|
|
|
|
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/
|
|
(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]));
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]);
|
|
|
|
edge_temp =
|
|
(Le*dot(gp->nedge[local_id], re)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->nj2_rj[local_id], re)*gp->nface[0] +
|
|
Le*dot(gp->nedge[local_id], r_j23[0].normal())*gp->nface[0] +
|
|
Le_rj*dot(gp->nedge[local_id], re)*gp->nface[0] +
|
|
Le*dot(gp->n2j_rj[local_id], re)*gp->nface[local_id+1] +
|
|
Le*dot(gp->nedge[local_id*3+5], r_j23[0].normal())*gp->nface[local_id+1] +
|
|
Le_rj*dot(gp->nedge[local_id*3+5], re)*gp->nface[local_id+1]);
|
|
|
|
//观测点到左侧边
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23[0], r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23[0], r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23);
|
|
|
|
Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/
|
|
(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]));
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]);
|
|
|
|
edge_temp = edge_temp +
|
|
(Le*dot(gp->nedge[(local_id+2)%3], re)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->n3j_rj[local_id], re)*gp->nface[0] +
|
|
Le*dot(gp->nedge[(local_id+2)%3], r_j23[0].normal())*gp->nface[0] +
|
|
Le_rj*dot(gp->nedge[(local_id+2)%3], re)*gp->nface[0] +
|
|
Le*dot(gp->nj3_rj[local_id], re)*gp->nface[(local_id+2)%3+1] +
|
|
Le*dot(gp->nedge[((local_id+2)%3)*3+5], r_j23[0].normal())*gp->nface[(local_id+2)%3+1] +
|
|
Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5], re)*gp->nface[(local_id+2)%3+1]);
|
|
|
|
//观测点到后侧
|
|
re = 0.5*(r_j23[1] + r_j23[2]) - op_c;
|
|
|
|
Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/
|
|
(L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3]));
|
|
|
|
edge_temp = edge_temp +
|
|
(Le*dot(gp->nedge[(local_id+1)%3], re)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->n23_rj[local_id], re)*gp->nface[0]);
|
|
|
|
|
|
//转换r_j23为顶点右边侧面的情况*******************************************
|
|
r_j23_side[0] = r_j23[0];
|
|
r_j23_side[1] = *curr_tri->vert[3];
|
|
r_j23_side[2] = r_j23[1];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
|
|
r_ijk[1] = r_j23_side[1] - op_c;
|
|
r_ijk[2] = r_j23_side[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23_side[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0], cross(r_ijk[1], r_ijk[2]));
|
|
beta_rj = dot(r_j23_side[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1], r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2], r_ijk[0]) + L_ijk[2]*dot(r_ijk[0], r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1], r_ijk[2]))*dot(r_j23_side[0], r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
|
|
|
|
wf = 2*atan2(beta, alpha);
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
//累加face_temp
|
|
face_temp = face_temp +
|
|
(wf*dot(gp->nface[local_id+1], r_j23_side[0])*gp->nface[local_id+1] +
|
|
wf_rj*dot(gp->nface[local_id+1], r_ijk[0])*gp->nface[local_id+1]);
|
|
|
|
//侧棱
|
|
re = r_j23_side[0] - op_c;
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23_side[0], r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23_side[0], r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23);;
|
|
|
|
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3])/
|
|
(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]));
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3])
|
|
- (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]);
|
|
|
|
edge_temp = edge_temp +
|
|
(Le*dot(gp->nedge[(local_id+1)*3], r_j23_side[0])*gp->nface[local_id+1] +
|
|
Le_rj*dot(gp->nedge[(local_id+1)*3], re)*gp->nface[local_id+1] +
|
|
Le*dot(gp->nedge[3*((local_id+2)%3+1)+1], r_j23_side[0])*gp->nface[(local_id+2)%3+1] +
|
|
Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1], re)*gp->nface[(local_id+2)%3+1]);
|
|
|
|
|
|
//转换r_j23为顶点左边侧面的情况*******************************************
|
|
r_j23_side[0] = r_j23[0];
|
|
r_j23_side[1] = r_j23[2];
|
|
r_j23_side[2] = *curr_tri->vert[3];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
|
|
r_ijk[1] = r_j23_side[1] - op_c;
|
|
r_ijk[2] = r_j23_side[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23_side[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23_side[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
|
|
|
|
wf = 2*atan2(beta, alpha);
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
//累加face_temp
|
|
face_temp = face_temp +
|
|
(wf*dot(gp->nface[(local_id+2)%3+1], r_j23_side[0])*gp->nface[(local_id+2)%3+1] +
|
|
wf_rj*dot(gp->nface[(local_id+2)%3+1], r_ijk[0])*gp->nface[(local_id+2)%3+1]);
|
|
|
|
point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(edge_temp, R) - dot(face_temp, R));
|
|
}
|
|
return point_sum;
|
|
}
|
|
|
|
double gobser_mGrad_tricone_vrp_sig(const std::vector<gctl::gravcone_gji*> &a_list,
|
|
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho)
|
|
{
|
|
int local_id;
|
|
double beta, beta_rj, alpha, alpha_rj;
|
|
double a_rj, e_rj, Le_rj, Le;
|
|
double wf, wf_rj;
|
|
double L_j23;
|
|
double L_ijk[3];
|
|
gctl::point3dc op_c;
|
|
gctl::point3dc r_j23[3];
|
|
gctl::point3dc r_j23_side[3];
|
|
gctl::point3dc r_ijk[3];
|
|
gctl::point3dc R, R_1st;
|
|
gctl::point3dc face_temp, edge_temp;
|
|
gctl::gravcone_gji* curr_tri;
|
|
gctl::gravcone_para_gji* gp;
|
|
|
|
R_1st.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R_1st.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R_1st.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R.x = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.y = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.z = 0.0;
|
|
|
|
op_c = a_op.s2c();
|
|
|
|
double point_sum = 0.0;
|
|
for (int j = 0; j < a_list.size(); j++)
|
|
{
|
|
curr_tri = a_list.at(j);
|
|
gp = curr_tri->att;
|
|
// 找到顶点在某个三棱锥中的局部排序
|
|
for (int t = 0; t < 3; t++)
|
|
{
|
|
if (vert_id == curr_tri->vert[t]->id)
|
|
{
|
|
local_id = t;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//先处理顶面
|
|
r_j23[0] = *curr_tri->vert[local_id];
|
|
r_j23[1] = *curr_tri->vert[(local_id+1)%3];
|
|
r_j23[2] = *curr_tri->vert[(local_id+2)%3];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0]
|
|
r_ijk[1] = r_j23[1] - op_c;
|
|
r_ijk[2] = r_j23[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23[0])/L_j23;
|
|
|
|
wf = 2*atan2(beta, alpha);
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
|
|
//计算面与边的乘积
|
|
face_temp = (wf*dot(gp->nface[0], R_1st)*gp->nf_rj[local_id] +
|
|
wf*dot(gp->nf_rj[local_id], R_1st)*gp->nface[0] +
|
|
wf_rj*dot(gp->nface[0], R_1st)*gp->nface[0]);
|
|
|
|
//观测点到右侧边
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23[0],r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23);
|
|
|
|
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/
|
|
(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]));
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]);
|
|
|
|
edge_temp =
|
|
(Le*dot(gp->nedge[local_id],R_1st)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->nj2_rj[local_id],R_1st)*gp->nface[0] +
|
|
Le_rj*dot(gp->nedge[local_id],R_1st)*gp->nface[0] +
|
|
Le*dot(gp->n2j_rj[local_id],R_1st)*gp->nface[local_id+1] +
|
|
Le_rj*dot(gp->nedge[local_id*3+5],R_1st)*gp->nface[local_id+1]);
|
|
|
|
//观测点到左侧边
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23[0],r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23);
|
|
|
|
Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/
|
|
(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]));
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]);
|
|
|
|
edge_temp = edge_temp +
|
|
(Le*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->n3j_rj[local_id],R_1st)*gp->nface[0] +
|
|
Le_rj*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nface[0] +
|
|
Le*dot(gp->nj3_rj[local_id],R_1st)*gp->nface[(local_id+2)%3+1] +
|
|
Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5],R_1st)*gp->nface[(local_id+2)%3+1]);
|
|
|
|
//观测点到背侧
|
|
Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/
|
|
(L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3]));
|
|
|
|
edge_temp = edge_temp +
|
|
(Le*dot(gp->nedge[(local_id+1)%3],R_1st)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->n23_rj[local_id],R_1st)*gp->nface[0]);
|
|
|
|
//转换r_j23为顶点右边侧面的情况*******************************************
|
|
r_j23_side[0] = r_j23[0];
|
|
r_j23_side[1] = *curr_tri->vert[3];
|
|
r_j23_side[2] = r_j23[1];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
|
|
r_ijk[1] = r_j23_side[1] - op_c;
|
|
r_ijk[2] = r_j23_side[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23_side[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
|
|
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
//累加face_temp
|
|
face_temp = face_temp +
|
|
wf_rj*dot(gp->nface[local_id+1],R_1st)*gp->nface[local_id+1];
|
|
|
|
//侧棱
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23_side[0],r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23_side[0],r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23);
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]);
|
|
|
|
edge_temp = edge_temp +
|
|
(Le_rj*dot(gp->nedge[(local_id+1)*3],R_1st)*gp->nface[local_id+1] +
|
|
Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1],R_1st)*gp->nface[(local_id+2)%3+1]);
|
|
|
|
//转换r_j23为顶点左边侧面的情况*******************************************
|
|
r_j23_side[0] = r_j23[0];
|
|
r_j23_side[1] = r_j23[2];
|
|
r_j23_side[2] = *curr_tri->vert[3];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
|
|
r_ijk[1] = r_j23_side[1] - op_c;
|
|
r_ijk[2] = r_j23_side[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23_side[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
|
|
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
//累加face_temp
|
|
face_temp = face_temp +
|
|
wf_rj*dot(gp->nface[(local_id+2)%3+1],R_1st)*gp->nface[(local_id+2)%3+1];
|
|
|
|
point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(face_temp, R) - dot(edge_temp, R));
|
|
}
|
|
return point_sum;
|
|
}
|
|
|
|
double gobser_mGrad_tricone_vrt_sig(const std::vector<gctl::gravcone_gji*> &a_list,
|
|
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho)
|
|
{
|
|
int local_id;
|
|
double beta, beta_rj, alpha, alpha_rj;
|
|
double a_rj, e_rj, Le_rj, Le;
|
|
double wf, wf_rj;
|
|
double L_j23;
|
|
double L_ijk[3];
|
|
gctl::point3dc op_c;
|
|
gctl::point3dc r_j23[3];
|
|
gctl::point3dc r_j23_side[3];
|
|
gctl::point3dc r_ijk[3];
|
|
gctl::point3dc R, R_1st;
|
|
gctl::point3dc face_temp, edge_temp;
|
|
gctl::gravcone_gji* curr_tri;
|
|
gctl::gravcone_para_gji* gp;
|
|
|
|
R_1st.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R_1st.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R_1st.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R.x = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.y = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.z = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
op_c = a_op.s2c();
|
|
|
|
double point_sum = 0.0;
|
|
for (int j = 0; j < a_list.size(); j++)
|
|
{
|
|
curr_tri = a_list.at(j);
|
|
gp = curr_tri->att;
|
|
// 找到顶点在某个三棱锥中的局部排序
|
|
for (int t = 0; t < 3; t++)
|
|
{
|
|
if (vert_id == curr_tri->vert[t]->id)
|
|
{
|
|
local_id = t;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//先处理顶面
|
|
r_j23[0] = *curr_tri->vert[local_id];
|
|
r_j23[1] = *curr_tri->vert[(local_id+1)%3];
|
|
r_j23[2] = *curr_tri->vert[(local_id+2)%3];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0]
|
|
r_ijk[1] = r_j23[1] - op_c;
|
|
r_ijk[2] = r_j23[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23[0])/L_j23;
|
|
|
|
wf = 2*atan2(beta, alpha);
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
|
|
//计算面与边的乘积
|
|
face_temp = (wf*dot(gp->nface[0], R_1st)*gp->nf_rj[local_id] +
|
|
wf*dot(gp->nf_rj[local_id], R_1st)*gp->nface[0] +
|
|
wf_rj*dot(gp->nface[0], R_1st)*gp->nface[0]);
|
|
|
|
//观测点到右侧边
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23[0],r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23);
|
|
|
|
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/
|
|
(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]));
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]);
|
|
|
|
edge_temp =
|
|
(Le*dot(gp->nedge[local_id],R_1st)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->nj2_rj[local_id],R_1st)*gp->nface[0] +
|
|
Le_rj*dot(gp->nedge[local_id],R_1st)*gp->nface[0] +
|
|
Le*dot(gp->n2j_rj[local_id],R_1st)*gp->nface[local_id+1] +
|
|
Le_rj*dot(gp->nedge[local_id*3+5],R_1st)*gp->nface[local_id+1]);
|
|
|
|
//观测点到左侧边
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23[0],r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23);
|
|
|
|
Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/
|
|
(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]));
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]);
|
|
|
|
edge_temp = edge_temp +
|
|
(Le*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->n3j_rj[local_id],R_1st)*gp->nface[0] +
|
|
Le_rj*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nface[0] +
|
|
Le*dot(gp->nj3_rj[local_id],R_1st)*gp->nface[(local_id+2)%3+1] +
|
|
Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5],R_1st)*gp->nface[(local_id+2)%3+1]);
|
|
|
|
//观测点到背侧
|
|
Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/
|
|
(L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3]));
|
|
|
|
edge_temp = edge_temp +
|
|
(Le*dot(gp->nedge[(local_id+1)%3],R_1st)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->n23_rj[local_id],R_1st)*gp->nface[0]);
|
|
|
|
//转换r_j23为顶点右边侧面的情况
|
|
r_j23_side[0] = r_j23[0];
|
|
r_j23_side[1] = *curr_tri->vert[3];
|
|
r_j23_side[2] = r_j23[1];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
|
|
r_ijk[1] = r_j23_side[1] - op_c;
|
|
r_ijk[2] = r_j23_side[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23_side[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
|
|
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
//累加face_temp
|
|
face_temp = face_temp +
|
|
wf_rj*dot(gp->nface[local_id+1],R_1st)*gp->nface[local_id+1];
|
|
|
|
//侧棱
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23_side[0],r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23_side[0],r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23);
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]);
|
|
|
|
edge_temp = edge_temp +
|
|
(Le_rj*dot(gp->nedge[(local_id+1)*3],R_1st)*gp->nface[local_id+1] +
|
|
Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1],R_1st)*gp->nface[(local_id+2)%3+1]);
|
|
|
|
//转换r_j23为顶点左边侧面的情况
|
|
r_j23_side[0] = r_j23[0];
|
|
r_j23_side[1] = r_j23[2];
|
|
r_j23_side[2] = *curr_tri->vert[3];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
|
|
r_ijk[1] = r_j23_side[1] - op_c;
|
|
r_ijk[2] = r_j23_side[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23_side[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
|
|
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
//累加face_temp
|
|
face_temp = face_temp +
|
|
wf_rj*dot(gp->nface[(local_id+2)%3+1],R_1st)*gp->nface[(local_id+2)%3+1];
|
|
|
|
point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(face_temp, R) - dot(edge_temp, R));
|
|
}
|
|
return point_sum;
|
|
}
|
|
|
|
double gobser_mGrad_tricone_vrr_sig(const std::vector<gctl::gravcone_gji*> &a_list,
|
|
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho)
|
|
{
|
|
int local_id;
|
|
double beta, beta_rj, alpha, alpha_rj;
|
|
double a_rj, e_rj, Le_rj, Le;
|
|
double wf, wf_rj;
|
|
double L_j23;
|
|
double L_ijk[3];
|
|
gctl::point3dc op_c;
|
|
gctl::point3dc r_j23[3];
|
|
gctl::point3dc r_j23_side[3];
|
|
gctl::point3dc r_ijk[3];
|
|
gctl::point3dc R;
|
|
gctl::point3dc face_temp, edge_temp;
|
|
gctl::gravcone_gji* curr_tri;
|
|
gctl::gravcone_para_gji* gp;
|
|
|
|
R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
op_c = a_op.s2c();
|
|
|
|
double point_sum = 0.0;
|
|
for (int j = 0; j < a_list.size(); j++)
|
|
{
|
|
curr_tri = a_list.at(j);
|
|
gp = curr_tri->att;
|
|
// 找到顶点在某个三棱锥中的局部排序
|
|
for (int t = 0; t < 3; t++)
|
|
{
|
|
if (vert_id == curr_tri->vert[t]->id)
|
|
{
|
|
local_id = t;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//先处理顶面
|
|
r_j23[0] = *curr_tri->vert[local_id];
|
|
r_j23[1] = *curr_tri->vert[(local_id+1)%3];
|
|
r_j23[2] = *curr_tri->vert[(local_id+2)%3];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0]
|
|
r_ijk[1] = r_j23[1] - op_c;
|
|
r_ijk[2] = r_j23[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23[0])/L_j23;
|
|
|
|
wf = 2*atan2(beta, alpha);
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
|
|
//计算面与边的乘积
|
|
face_temp = (wf*dot(gp->nface[0], R)*gp->nf_rj[local_id] +
|
|
wf*dot(gp->nf_rj[local_id], R)*gp->nface[0] +
|
|
wf_rj*dot(gp->nface[0], R)*gp->nface[0]);
|
|
|
|
//观测点到右侧边
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23[0],r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23);
|
|
|
|
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/
|
|
(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]));
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]);
|
|
|
|
edge_temp =
|
|
(Le*dot(gp->nedge[local_id],R)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->nj2_rj[local_id],R)*gp->nface[0] +
|
|
Le_rj*dot(gp->nedge[local_id],R)*gp->nface[0] +
|
|
Le*dot(gp->n2j_rj[local_id],R)*gp->nface[local_id+1] +
|
|
Le_rj*dot(gp->nedge[local_id*3+5],R)*gp->nface[local_id+1]);
|
|
|
|
//观测点到左侧边
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23[0],r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23);
|
|
|
|
Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/
|
|
(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]));
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]);
|
|
|
|
edge_temp = edge_temp +
|
|
(Le*dot(gp->nedge[(local_id+2)%3],R)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->n3j_rj[local_id],R)*gp->nface[0] +
|
|
Le_rj*dot(gp->nedge[(local_id+2)%3],R)*gp->nface[0] +
|
|
Le*dot(gp->nj3_rj[local_id],R)*gp->nface[(local_id+2)%3+1] +
|
|
Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5],R)*gp->nface[(local_id+2)%3+1]);
|
|
|
|
//观测点到背侧
|
|
Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/
|
|
(L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3]));
|
|
|
|
edge_temp = edge_temp +
|
|
(Le*dot(gp->nedge[(local_id+1)%3],R)*gp->nf_rj[local_id] +
|
|
Le*dot(gp->n23_rj[local_id],R)*gp->nface[0]);
|
|
|
|
//转换r_j23为顶点右边侧面的情况
|
|
r_j23_side[0] = r_j23[0];
|
|
r_j23_side[1] = *curr_tri->vert[3];
|
|
r_j23_side[2] = r_j23[1];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
|
|
r_ijk[1] = r_j23_side[1] - op_c;
|
|
r_ijk[2] = r_j23_side[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23_side[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
|
|
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
//累加face_temp
|
|
face_temp = face_temp +
|
|
wf_rj*dot(gp->nface[local_id+1],R)*gp->nface[local_id+1];
|
|
|
|
//侧棱
|
|
//计算a_rj,e_rj
|
|
a_rj = dot(r_j23_side[0],r_ijk[0])/(L_ijk[0]*L_j23);
|
|
e_rj = dot(r_j23_side[0],r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23);
|
|
|
|
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) -
|
|
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]);
|
|
|
|
edge_temp = edge_temp +
|
|
(Le_rj*dot(gp->nedge[(local_id+1)*3],R)*gp->nface[local_id+1] +
|
|
Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1],R)*gp->nface[(local_id+2)%3+1]);
|
|
|
|
//转换r_j23为顶点左边侧面的情况
|
|
r_j23_side[0] = r_j23[0];
|
|
r_j23_side[1] = r_j23[2];
|
|
r_j23_side[2] = *curr_tri->vert[3];
|
|
//确定观测点到三个顶点的矢量
|
|
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
|
|
r_ijk[1] = r_j23_side[1] - op_c;
|
|
r_ijk[2] = r_j23_side[2] - op_c;
|
|
//计算对应的矢量长度
|
|
L_j23 = r_j23_side[0].module();
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
//计算wf和wf相对于rj的偏导数
|
|
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
|
|
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
|
|
|
|
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
|
|
|
|
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
|
|
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
|
|
|
|
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
|
|
//累加face_temp
|
|
face_temp = face_temp +
|
|
wf_rj*dot(gp->nface[(local_id+2)%3+1],R)*gp->nface[(local_id+2)%3+1];
|
|
|
|
point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(edge_temp, R) - dot(face_temp, R));
|
|
}
|
|
return point_sum;
|
|
}
|
|
|
|
|
|
// 以下是具体的实现
|
|
|
|
double gkernel_tricone_gji_pot_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op)
|
|
{
|
|
int f,e;
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
double face_sum, edge_sum;
|
|
// 直角坐标系下观测点的位置
|
|
gctl::point3dc op_c;
|
|
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
|
|
gctl::point3dc face_tmp, edge_tmp;
|
|
gctl::point3dc re;
|
|
gctl::point3dc r_ijk[3];
|
|
double L_ijk[3];
|
|
|
|
gctl::gravcone_para_gji* gp = a_ele.att;
|
|
|
|
op_c = a_op.s2c();
|
|
|
|
face_sum = edge_sum = 0.0;
|
|
for (f = 0; f < 4; f++)
|
|
{
|
|
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
|
|
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
|
|
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_tmp = gp->F[f] * r_ijk[0];
|
|
face_sum += dot(r_ijk[0],face_tmp)*wf;
|
|
|
|
for (e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.fget(f, e), op_c);
|
|
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
|
|
|
|
re = 0.5*(*a_ele.fget(f, e) + *a_ele.fget(f, (e+1)%3)) - op_c;
|
|
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
|
|
|
|
edge_tmp = gp->E[e+3*f] * re;
|
|
edge_sum += dot(re, edge_tmp)*Le;
|
|
}
|
|
}
|
|
return -0.5e+8*GCTL_G0*(face_sum - edge_sum);
|
|
}
|
|
|
|
double gkernel_tricone_gji_vr_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op)
|
|
{
|
|
int f,e;
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
double face_sum, edge_sum;
|
|
// 直角坐标系下观测点的位置
|
|
gctl::point3dc op_c;
|
|
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
|
|
gctl::point3dc face_tmp, edge_tmp;
|
|
// 注意这里R并不是一个直角坐标系下的点 我们只是借用向量操作而已
|
|
gctl::point3dc R;
|
|
gctl::point3dc re;
|
|
gctl::point3dc r_ijk[3];
|
|
double L_ijk[3];
|
|
|
|
gctl::gravcone_para_gji* gp = a_ele.att;
|
|
|
|
R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
op_c = a_op.s2c();
|
|
|
|
face_sum = edge_sum = 0.0;
|
|
for (f = 0; f < 4; f++)
|
|
{
|
|
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
|
|
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
|
|
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_tmp = gp->F[f] * r_ijk[0];
|
|
face_sum += dot(R,face_tmp)*wf;
|
|
|
|
for (e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.fget(f, e), op_c);
|
|
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
|
|
|
|
re = 0.5*(*a_ele.fget(f, e) + *a_ele.fget(f, (e+1)%3)) - op_c;
|
|
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
|
|
|
|
edge_tmp = gp->E[e+3*f] * re;
|
|
edge_sum += dot(R,edge_tmp)*Le;
|
|
}
|
|
}
|
|
return -1.0e+8*GCTL_G0*(face_sum - edge_sum);
|
|
}
|
|
|
|
double gkernel_tricone_gji_vrp_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op)
|
|
{
|
|
int f,e;
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
double face_sum,edge_sum;
|
|
// 直角坐标系下观测点的位置
|
|
gctl::point3dc op_c;
|
|
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
|
|
gctl::point3dc face_tmp, edge_tmp;
|
|
// 这里我们需要完整的转换矩阵
|
|
gctl::tensor R;
|
|
gctl::point3dc r_ijk[3];
|
|
double L_ijk[3];
|
|
|
|
gctl::gravcone_para_gji* gp = a_ele.att;
|
|
|
|
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][2] = 0.0;
|
|
|
|
op_c = a_op.s2c();
|
|
|
|
face_sum = edge_sum = 0.0;
|
|
for (f = 0; f < 4; f++)
|
|
{
|
|
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
|
|
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
|
|
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2];
|
|
face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2];
|
|
face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2];
|
|
|
|
face_sum += (R[2][0]*face_tmp.x + R[2][1]*face_tmp.y + R[2][2]*face_tmp.z) * wf;
|
|
|
|
for (e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.fget(f, e), op_c);
|
|
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
|
|
|
|
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
|
|
|
|
edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2];
|
|
edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2];
|
|
edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2];
|
|
|
|
edge_sum += (R[2][0]*edge_tmp.x + R[2][1]*edge_tmp.y + R[2][2]*edge_tmp.z) * Le;
|
|
}
|
|
}
|
|
return 1.0e+8*GCTL_G0*(face_sum - edge_sum);
|
|
}
|
|
|
|
double gkernel_tricone_gji_vrt_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op)
|
|
{
|
|
int f,e;
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
double face_sum,edge_sum;
|
|
// 直角坐标系下观测点的位置
|
|
gctl::point3dc op_c;
|
|
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
|
|
gctl::point3dc face_tmp, edge_tmp;
|
|
// 这里我们需要完整的转换矩阵
|
|
gctl::tensor R;
|
|
gctl::point3dc r_ijk[3];
|
|
double L_ijk[3];
|
|
|
|
gctl::gravcone_para_gji* gp = a_ele.att;
|
|
|
|
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][2] = 0.0;
|
|
|
|
op_c = a_op.s2c();
|
|
|
|
face_sum = edge_sum = 0.0;
|
|
for (f = 0; f < 4; f++)
|
|
{
|
|
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
|
|
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
|
|
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2];
|
|
face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2];
|
|
face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2];
|
|
|
|
face_sum += (R[1][0]*face_tmp.x + R[1][1]*face_tmp.y + R[1][2]*face_tmp.z) * wf;
|
|
|
|
for (e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.fget(f, e), op_c);
|
|
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
|
|
|
|
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
|
|
|
|
edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2];
|
|
edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2];
|
|
edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2];
|
|
|
|
edge_sum += (R[1][0]*edge_tmp.x + R[1][1]*edge_tmp.y + R[1][2]*edge_tmp.z) * Le;
|
|
}
|
|
}
|
|
return 1.0e+8*GCTL_G0*(face_sum - edge_sum);
|
|
}
|
|
|
|
double gkernel_tricone_gji_vrr_sig(const gctl::gravcone_gji &a_ele, const gctl::point3ds &a_op)
|
|
{
|
|
int f,e;
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
double face_sum,edge_sum;
|
|
// 直角坐标系下观测点的位置
|
|
gctl::point3dc op_c;
|
|
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
|
|
gctl::point3dc face_tmp, edge_tmp;
|
|
// 这里我们需要完整的转换矩阵
|
|
gctl::tensor R;
|
|
gctl::point3dc r_ijk[3];
|
|
double L_ijk[3];
|
|
|
|
gctl::gravcone_para_gji* gp = a_ele.att;
|
|
|
|
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][2] = 0.0;
|
|
|
|
op_c = a_op.s2c();
|
|
|
|
face_sum = edge_sum = 0.0;
|
|
for (f = 0; f < 4; f++)
|
|
{
|
|
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
|
|
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
|
|
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2];
|
|
face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2];
|
|
face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2];
|
|
|
|
face_sum += (R[0][0]*face_tmp.x + R[0][1]*face_tmp.y + R[0][2]*face_tmp.z) * wf;
|
|
|
|
for (e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.fget(f, e), op_c);
|
|
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
|
|
|
|
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
|
|
|
|
edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2];
|
|
edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2];
|
|
edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2];
|
|
|
|
edge_sum += (R[0][0]*edge_tmp.x + R[0][1]*edge_tmp.y + R[0][2]*edge_tmp.z) * Le;
|
|
}
|
|
}
|
|
return -1.0e+8*GCTL_G0*(face_sum - edge_sum);
|
|
} |