gctl_potential/lib/potential/mkernel_dipole.cpp
2024-09-10 19:56:41 +08:00

112 lines
4.1 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "mkernel_dipole.h"
void gctl::mag_axial_dipole_parameters(double &M, double &I, double r, double lat_deg, double sus, double ref_r, double abs_g0)
{
M = sus*fabs(abs_g0)*power3(ref_r/r)*sqrt(1.0 + 3.0*power2(sind(lat_deg)));
I = atan(2.0*tan(GCTL_Pi*lat_deg/180.0));
return;
}
gctl::point3dc gctl::magkernel_single(const mag_dipole &a_dipole, const point3dc &a_op)
{
double r = a_op.module();
// T -> nT 1e+9 * 1e-7 -> 1e+2
return 1e+2*a_dipole.M*(3.0*dot(a_dipole.n, a_op)/power5(r)*a_op - 1.0/power3(r)*a_dipole.n);
}
gctl::point3dc gctl::magkernel_single(const mag_dipole &a_dipole, const point3ds &a_op, tensor *R_ptr)
{
tensor R;
if (R_ptr != nullptr) R = *R_ptr;
else R = transform_matrix(a_op);
double r = a_op.rad;
point3dc pc = a_op.s2c();
// T -> nT 1e+9 * 1e-7 -> 1e+2
point3dc b = 1e+2*a_dipole.M*(3.0*dot(a_dipole.n, pc)/power5(r)*pc - 1.0/power3(r)*a_dipole.n);
b = R*b;
b.z = 0.0; // the latitudinal componement is zero
return b;
}
void gctl::magobser(array<point3dc> &out_obs, const array<mag_dipole> &dipoles,
const array<point3dc> &obsp, verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = dipoles.size();
out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0));
gctl::progress_bar bar(e_size, "magobser_componments");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] = out_obs[i] + magkernel_single(dipoles[j], obsp[i]);;
}
}
return;
}
void gctl::magobser(array<point3dc> &out_obs, const array<mag_dipole> &dipoles,
const array<point3ds> &obsp, verbose_type_e verbose)
{
int i, j;
int o_size = obsp.size();
int e_size = dipoles.size();
out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0));
array<tensor> Rs(o_size);
#pragma omp parallel for private (i) schedule(guided)
for (i = 0; i < o_size; i++)
{
Rs[i] = transform_matrix(obsp[i]);
}
gctl::progress_bar bar(e_size, "magobser_componments");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs[i] = out_obs[i] + magkernel_single(dipoles[j], obsp[i], Rs.get(i));
}
}
return;
}