gctl_potential/lib/potential/mkernel_tetrahedron.h
2024-09-10 19:56:41 +08:00

134 lines
6.2 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#ifndef _GCTL_MAG_KERNEL_TETRAHEDRON_H
#define _GCTL_MAG_KERNEL_TETRAHEDRON_H
#include "gm_data.h"
namespace gctl
{
/**
* @brief 四面体磁性参数结构体
*
*/
struct magtet_para
{
point3dc B; ///< 磁化强度矢量 directional magnetizations
tensor F[4]; ///< 面的张量积 tensor products of four facets
tensor E[12]; ///< 边的张量积 tensor products of six edges
double edglen[12]; ///< 边的长度 edge lengths of six edges
};
typedef type_tetrahedron<magtet_para> mag_tetrahedron; ///< 带磁性参数的四面体结构体
/**
* @brief Calculate the magnetic parameters of given tetrahedral elements.
*
* @param in_tet Input and output elements
* @param out_para Output parameters
* @param mag_B magnetization vecrtors
*/
void callink_magnetic_para(array<mag_tetrahedron> &in_tet, array<magtet_para> &out_para, const array<point3dc> &mag_B);
/**
* @brief Calculate the magnetic parameters of given tetrahedral elements.
*
* @note The value of magnetic susceptibility is taken as one here. This is usefull for calculating
* kernel matrix of the magnetic anomalies.
*
* @param in_tet Input and output elements
* @param out_para Output parameters
* @param inclina_deg inclination angle
* @param declina_deg declination angle
* @param field_tense Tense of the Earth's magnetic field
*/
void callink_magnetic_para_earth(array<mag_tetrahedron> &in_tet, array<magtet_para> &out_para,
double inclina_deg, double declina_deg, double field_tense = GCTL_T0);
/**
* @brief Calculate the magnetic parameters of given tetrahedral elements wrt. the spherical coordinates.
*
* @note The value of magnetic susceptibility is taken as one here. This is usefull for calculating
* kernel matrix of the magnetic anomalies.
*
* @param in_tet Input elements
* @param out_para Output parameters
* @param inclina_deg inclination angle of the magnetization vector wrt. the local Cartesian coordinates at every tetrahedral elements
* @param declina_deg declination angle of the magnetization vector wrt. the local Cartesian coordinates at every tetrahedral elements
* @param mag_vec Output magnetization vectors (This is useful for data visualization)
* @param field_tense Tense of the Earth's magnetic field
*/
void callink_magnetic_para_earth_sph(array<mag_tetrahedron> &in_tet, array<magtet_para> &out_para,
double inclina_deg, double declina_deg, array<point3dc> *mag_vec = nullptr, double field_tense = GCTL_T0);
/**
* @brief Calculate the magnetic componments of a single tetrahedron element under the Cartesian coordinates
*
* @param out_b The output magnetic componments
* @param a_ele The tetrahedron element
* @param a_op The observation point
* @return point3dc The returned magnetic componments
*/
point3dc magkernel_single(const mag_tetrahedron &a_ele, const point3dc &a_op);
/**
* @brief Calculate the magnetic componments of a single tetrahedron element under the spherical coordinates
*
* @param a_ele The tetrahedron element
* @param a_op The observation point
* @param R_ptr Pointer of the coordinate transform matrix. This is used to speed up the computation.
* @return point3dc The returned magnetic componments
*/
point3dc magkernel_single(const mag_tetrahedron &a_ele, const point3ds &a_op, tensor *R_ptr = nullptr);
/**
* @brief Calculate the magnetic componments of tetrahedron elements under the Cartesian coordinates
*
* @param out_obs Output magnetic field data. Directional components are stored accordingly.
* @param ele The tetrahedron elements
* @param obsp The observation points
* @param sus Magnetic susceptibilities
* @param verbose Output info level
*/
void magobser(array<point3dc> &out_obs, const array<mag_tetrahedron> &ele, const array<point3dc> &obsp,
const array<double> &sus, verbose_type_e verbose = FullMsg);
/**
* @brief Calculate the magnetic componments of tetrahedron elements under the Spherical coordinates
*
* @param out_obs Output magnetic field data. Directional components are stored accordingly.
* @param ele The tetrahedron elements
* @param obsp The observation points
* @param sus Magnetic susceptibilities
* @param verbose Output info level
*/
void magobser(array<point3dc> &out_obs, const array<mag_tetrahedron> &ele, const array<point3ds> &obsp,
const array<double> &sus, verbose_type_e verbose = FullMsg);
}
#endif // _GCTL_MAG_KERNEL_TETRAHEDRON_H