527 lines
16 KiB
C++
527 lines
16 KiB
C++
/********************************************************
|
|
* ██████╗ ██████╗████████╗██╗
|
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
|
* ██║ ███╗██║ ██║ ██║
|
|
* ██║ ██║██║ ██║ ██║
|
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
|
* Geophysical Computational Tools & Library (GCTL)
|
|
*
|
|
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
|
|
*
|
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, either version 2
|
|
* of the License, or (at your option) any later version. You should have
|
|
* received a copy of the GNU Lesser General Public License along with this
|
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
|
* the GCTL, please consider the option to obtain a commercial license for a
|
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
|
* to include some description of your company and the realm of its activities.
|
|
* Also add information on how to contact you by electronic and paper mail.
|
|
******************************************************/
|
|
|
|
#include "gkernel_triangle.h"
|
|
#include "cmath"
|
|
|
|
void gctl::callink_gravity_para(array<grav_triangle> &in_tri, array<gravtri_para> &out_para)
|
|
{
|
|
point3dc v0, v1, v2, nor_f;
|
|
|
|
out_para.resize(in_tri.size());
|
|
for (int i = 0; i < in_tri.size(); ++i)
|
|
{
|
|
if (in_tri[i].vert[0] == nullptr || in_tri[i].vert[1] == nullptr ||
|
|
in_tri[i].vert[2] == nullptr)
|
|
{
|
|
throw runtime_error("Invalid vertex pointer. From callink_gravity_para(...)");
|
|
}
|
|
|
|
v0 = *in_tri[i].vert[0];
|
|
v1 = *in_tri[i].vert[1];
|
|
v2 = *in_tri[i].vert[2];
|
|
|
|
nor_f = cross(v1-v0, v2-v0).normal();
|
|
out_para[i].F = kron(nor_f, nor_f);
|
|
|
|
for (int e = 0; e < 3; ++e)
|
|
{
|
|
v2 = *in_tri[i].vert[(e+1)%3] - *in_tri[i].vert[e];
|
|
out_para[i].edglen[e] = v2.module();
|
|
out_para[i].E[e] = kron(nor_f, cross(v2, nor_f).normal());
|
|
}
|
|
|
|
in_tri[i].att = out_para.get(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
double gkernel_triangle_potential_sig(const gctl::grav_triangle &a_ele, const gctl::point3dc &a_op);
|
|
gctl::point3dc gkernel_triangle_gradient_sig(const gctl::grav_triangle &a_ele, const gctl::point3dc &a_op);
|
|
gctl::tensor gkernel_triangle_tensor_sig(const gctl::grav_triangle &a_ele, const gctl::point3dc &a_op);
|
|
|
|
double gkernel_triangle_potential_sig_sph(const gctl::grav_triangle &a_ele, const gctl::point3ds &a_op);
|
|
gctl::point3dc gkernel_triangle_gradient_sig_sph(const gctl::grav_triangle &a_ele, const gctl::point3ds &a_op);
|
|
gctl::tensor gkernel_triangle_tensor_sig_sph(const gctl::grav_triangle &a_ele, const gctl::point3ds &a_op);
|
|
|
|
|
|
void gctl::gobser(array<double> &out_obs, const array<grav_triangle> &ele,
|
|
const array<point3dc> &ops, double rho, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_potential");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] += gkernel_triangle_potential_sig(ele[j], ops[i]) * rho;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::gobser(array<point3dc> &out_obs, const array<grav_triangle> &ele,
|
|
const array<point3dc> &ops, double rho, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_gradient");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] = out_obs[i] + gkernel_triangle_gradient_sig(ele[j], ops[i]) * rho;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::gobser(array<tensor> &out_obs, const array<grav_triangle> &ele,
|
|
const array<point3dc> &ops, double rho, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, tensor(0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_tensor");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] = out_obs[i] + gkernel_triangle_tensor_sig(ele[j], ops[i]) * rho;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::gobser(array<double> &out_obs, const array<grav_triangle> &ele,
|
|
const array<point3ds> &ops, double rho, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_potential");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] += gkernel_triangle_potential_sig_sph(ele[j], ops[i]) * rho;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::gobser(array<point3dc> &out_obs, const array<grav_triangle> &ele,
|
|
const array<point3ds> &ops, double rho, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_gradient");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] = out_obs[i] + gkernel_triangle_gradient_sig_sph(ele[j], ops[i]) * rho;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::gobser(array<tensor> &out_obs, const array<grav_triangle> &ele,
|
|
const array<point3ds> &ops, double rho, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, tensor(0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "gobser_tensor");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] = out_obs[i] + gkernel_triangle_tensor_sig_sph(ele[j], ops[i]) * rho;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// define individual algorithm here
|
|
double gkernel_triangle_potential_sig(const gctl::grav_triangle &a_ele, const gctl::point3dc &a_op)
|
|
{
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
double face_sum, edge_sum;
|
|
gctl::point3dc re;
|
|
gctl::point3dc r_ijk[3];
|
|
gctl::point3dc face_tmp(0.0, 0.0, 0.0);
|
|
gctl::point3dc edge_tmp(0.0, 0.0, 0.0);
|
|
double L_ijk[3];
|
|
|
|
gctl::gravtri_para *gp = a_ele.att;
|
|
|
|
r_ijk[0] = *a_ele.vert[0] - a_op;
|
|
r_ijk[1] = *a_ele.vert[1] - a_op;
|
|
r_ijk[2] = *a_ele.vert[2] - a_op;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_tmp = gp->F * r_ijk[0];
|
|
face_sum = dot(r_ijk[0], face_tmp) * wf;
|
|
|
|
edge_sum = 0.0;
|
|
for (int e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.vert[e], a_op);
|
|
dv2 = distance(*a_ele.vert[(e+1)%3], a_op);
|
|
|
|
re = 0.5*(*a_ele.vert[e] + *a_ele.vert[(e+1)%3]) - a_op;
|
|
Le = log((dv1+dv2+gp->edglen[e])/(dv1+dv2-gp->edglen[e]));
|
|
|
|
edge_tmp = gp->E[e] * re;
|
|
edge_sum += dot(re, edge_tmp) * Le;
|
|
}
|
|
|
|
// 重力正演中通常z方向取垂直向下为正方向
|
|
return -0.5e+8*GCTL_G0*(face_sum - edge_sum);
|
|
}
|
|
|
|
gctl::point3dc gkernel_triangle_gradient_sig(const gctl::grav_triangle &a_ele, const gctl::point3dc &a_op)
|
|
{
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
gctl::point3dc re;
|
|
gctl::point3dc r_ijk[3];
|
|
gctl::point3dc face_sum(0.0, 0.0, 0.0);
|
|
gctl::point3dc edge_sum(0.0, 0.0, 0.0);
|
|
double L_ijk[3];
|
|
|
|
gctl::gravtri_para *gp = a_ele.att;
|
|
|
|
r_ijk[0] = *a_ele.vert[0] - a_op;
|
|
r_ijk[1] = *a_ele.vert[1] - a_op;
|
|
r_ijk[2] = *a_ele.vert[2] - a_op;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_sum = (gp->F * r_ijk[0]) * wf;
|
|
|
|
for (int e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.vert[e], a_op);
|
|
dv2 = distance(*a_ele.vert[(e+1)%3], a_op);
|
|
|
|
re = 0.5*(*a_ele.vert[e] + *a_ele.vert[(e+1)%3]) - a_op;
|
|
Le = log((dv1+dv2+gp->edglen[e])/(dv1+dv2-gp->edglen[e]));
|
|
|
|
edge_sum = edge_sum + (gp->E[e] * re) * Le;
|
|
}
|
|
|
|
gctl::point3dc out_p = 1.0e+8*GCTL_G0*(face_sum - edge_sum);
|
|
out_p.z *= -1.0; // 重力正演中通常z方向取垂直向下为正方向
|
|
return out_p;
|
|
}
|
|
|
|
gctl::tensor gkernel_triangle_tensor_sig(const gctl::grav_triangle &a_ele, const gctl::point3dc &a_op)
|
|
{
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
gctl::point3dc r_ijk[3];
|
|
gctl::tensor face_sum(0.0);
|
|
gctl::tensor edge_sum(0.0);
|
|
double L_ijk[3];
|
|
|
|
gctl::gravtri_para *gp = a_ele.att;
|
|
|
|
r_ijk[0] = *a_ele.vert[0] - a_op;
|
|
r_ijk[1] = *a_ele.vert[1] - a_op;
|
|
r_ijk[2] = *a_ele.vert[2] - a_op;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_sum = wf * gp->F;
|
|
|
|
for (int e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.vert[e], a_op);
|
|
dv2 = distance(*a_ele.vert[(e+1)%3], a_op);
|
|
|
|
Le = log((dv1+dv2+gp->edglen[e])/(dv1+dv2-gp->edglen[e]));
|
|
|
|
edge_sum = edge_sum + Le * gp->E[e];
|
|
}
|
|
|
|
// 重力正演中通常z方向取垂直向下为正方向
|
|
gctl::tensor out_t = 1.0e+8*GCTL_G0*(face_sum - edge_sum);
|
|
out_t[0][0] *= -1.0;
|
|
out_t[0][1] *= -1.0;
|
|
out_t[1][0] *= -1.0;
|
|
out_t[1][1] *= -1.0;
|
|
out_t[2][2] *= -1.0;
|
|
return out_t;
|
|
}
|
|
|
|
double gkernel_triangle_potential_sig_sph(const gctl::grav_triangle &a_ele, const gctl::point3ds &a_op)
|
|
{
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
double face_sum, edge_sum;
|
|
gctl::point3dc re, op_c;
|
|
gctl::point3dc r_ijk[3];
|
|
gctl::point3dc face_tmp(0.0, 0.0, 0.0);
|
|
gctl::point3dc edge_tmp(0.0, 0.0, 0.0);
|
|
double L_ijk[3];
|
|
|
|
gctl::gravtri_para *gp = a_ele.att;
|
|
|
|
op_c = s2c(a_op);
|
|
|
|
r_ijk[0] = *a_ele.vert[0] - op_c;
|
|
r_ijk[1] = *a_ele.vert[1] - op_c;
|
|
r_ijk[2] = *a_ele.vert[2] - op_c;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0], cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_tmp = gp->F * r_ijk[0];
|
|
face_sum = dot(r_ijk[0], face_tmp) * wf;
|
|
|
|
edge_sum = 0.0;
|
|
for (int e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.vert[e], op_c);
|
|
dv2 = distance(*a_ele.vert[(e+1)%3], op_c);
|
|
|
|
re = 0.5*(*a_ele.vert[e] + *a_ele.vert[(e+1)%3]) - op_c;
|
|
Le = log((dv1+dv2+gp->edglen[e])/(dv1+dv2-gp->edglen[e]));
|
|
|
|
edge_tmp = gp->E[e] * re;
|
|
edge_sum += dot(re, edge_tmp) * Le;
|
|
}
|
|
|
|
// 重力正演中通常负r方向为正方向
|
|
return -0.5e+8*GCTL_G0*(face_sum - edge_sum);
|
|
}
|
|
|
|
gctl::point3dc gkernel_triangle_gradient_sig_sph(const gctl::grav_triangle &a_ele, const gctl::point3ds &a_op)
|
|
{
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
// 直角坐标系下观测点的位置
|
|
gctl::point3dc op_c;
|
|
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
|
|
gctl::point3dc face_tmp, edge_tmp;
|
|
gctl::point3dc face_sum(0.0, 0.0, 0.0);
|
|
gctl::point3dc edge_sum(0.0, 0.0, 0.0);
|
|
gctl::tensor R;
|
|
gctl::point3dc re;
|
|
gctl::point3dc r_ijk[3];
|
|
double L_ijk[3];
|
|
|
|
gctl::gravtri_para *gp = a_ele.att;
|
|
|
|
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][2] = 0.0;
|
|
|
|
op_c = s2c(a_op);
|
|
|
|
r_ijk[0] = *a_ele.vert[0] - op_c;
|
|
r_ijk[1] = *a_ele.vert[1] - op_c;
|
|
r_ijk[2] = *a_ele.vert[2] - op_c;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_tmp = gp->F * r_ijk[0];
|
|
face_sum = (R * face_tmp) * wf;
|
|
|
|
for (int e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.vert[e], op_c);
|
|
dv2 = distance(*a_ele.vert[(e+1)%3], op_c);
|
|
|
|
re = 0.5*(*a_ele.vert[e] + *a_ele.vert[(e+1)%3]) - op_c;
|
|
Le = log((dv1+dv2+gp->edglen[e])/(dv1+dv2-gp->edglen[e]));
|
|
|
|
edge_tmp = gp->E[e] * re;
|
|
edge_sum = edge_sum + (R * edge_tmp) * Le;
|
|
}
|
|
|
|
gctl::point3dc out_p = 1.0e+8*GCTL_G0*(face_sum - edge_sum);
|
|
out_p.x *= -1.0; // 重力正演中通常负r方向为正方向
|
|
return out_p;
|
|
}
|
|
|
|
gctl::tensor gkernel_triangle_tensor_sig_sph(const gctl::grav_triangle &a_ele, const gctl::point3ds &a_op)
|
|
{
|
|
double Le,wf;
|
|
double dv1,dv2;
|
|
// 直角坐标系下观测点的位置
|
|
gctl::point3dc op_c;
|
|
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
|
|
gctl::tensor face_tmp, edge_tmp;
|
|
gctl::tensor face_sum(0.0), edge_sum(0.0);
|
|
// 这里我们需要完整的转换矩阵
|
|
gctl::tensor R, R_T;
|
|
gctl::point3dc r_ijk[3];
|
|
double L_ijk[3];
|
|
|
|
gctl::gravtri_para *gp = a_ele.att;
|
|
|
|
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
|
|
|
|
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
|
|
R[2][2] = 0.0;
|
|
|
|
R_T = R.transpose();
|
|
|
|
op_c = s2c(a_op);
|
|
|
|
r_ijk[0] = *a_ele.vert[0] - op_c;
|
|
r_ijk[1] = *a_ele.vert[1] - op_c;
|
|
r_ijk[2] = *a_ele.vert[2] - op_c;
|
|
|
|
L_ijk[0] = r_ijk[0].module();
|
|
L_ijk[1] = r_ijk[1].module();
|
|
L_ijk[2] = r_ijk[2].module();
|
|
|
|
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
|
|
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
|
|
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
|
|
|
|
face_tmp = gp->F * R_T;
|
|
face_sum = (R * face_tmp) * wf;
|
|
|
|
for (int e = 0; e < 3; e++)
|
|
{
|
|
dv1 = distance(*a_ele.vert[e], op_c);
|
|
dv2 = distance(*a_ele.vert[(e+1)%3], op_c);
|
|
|
|
Le = log((dv1+dv2+gp->edglen[e])/(dv1+dv2-gp->edglen[e]));
|
|
|
|
edge_tmp = gp->E[e] * R_T;
|
|
edge_sum = edge_sum + (R * edge_tmp) * Le;
|
|
}
|
|
|
|
// 重力正演中通常负r方向为正方向
|
|
gctl::tensor out_t = 1.0e+8*GCTL_G0*(face_sum - edge_sum);
|
|
out_t[0][0] *= -1.0;
|
|
out_t[1][2] *= -1.0;
|
|
out_t[2][1] *= -1.0;
|
|
out_t[1][1] *= -1.0;
|
|
out_t[2][2] *= -1.0;
|
|
return out_t;
|
|
}
|