gctl_potential/lib/potential/gm_data.cpp
2025-04-12 18:34:01 +08:00

469 lines
17 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "gm_data.h"
gctl::tensor gctl::transform_matrix(const point3ds &op)
{
tensor R;
R[0][0] = sin((0.5 - op.lat/180.0)*GCTL_Pi)*cos((2.0 + op.lon/180.0)*GCTL_Pi);
R[0][1] = sin((0.5 - op.lat/180.0)*GCTL_Pi)*sin((2.0 + op.lon/180.0)*GCTL_Pi);
R[0][2] = cos((0.5 - op.lat/180.0)*GCTL_Pi);
R[1][0] = cos((0.5 - op.lat/180.0)*GCTL_Pi)*cos((2.0 + op.lon/180.0)*GCTL_Pi);
R[1][1] = cos((0.5 - op.lat/180.0)*GCTL_Pi)*sin((2.0 + op.lon/180.0)*GCTL_Pi);
R[1][2] = -1.0*sin((0.5 - op.lat/180.0)*GCTL_Pi);
R[2][0] = -1.0*sin((2.0 + op.lon/180.0)*GCTL_Pi);
R[2][1] = cos((2.0 + op.lon/180.0)*GCTL_Pi);
R[2][2] = 0.0;
return R;
}
void gctl::geomag_local2Cartesian(array<point3dc> &abs_b_, const array<point3dc> &geo_b_, const array<point3ds> &loc_s_)
{
if (geo_b_.size() != loc_s_.size())
{
throw std::runtime_error("[gctl::geomag_local2Cartesian] Incompatible input arraies' size.");
}
abs_b_.resize(geo_b_.size());
point3dc mag_v;
for (size_t i = 0; i < geo_b_.size(); i++)
{
// magnetization vector at the local coordinates
// note here the postive direction of the inclination angle is downward
// note here the postive direction of the declination angle is clockwise
mag_v.x = geo_b_[i].z;
mag_v.y = geo_b_[i].y;
mag_v.z = -1.0*geo_b_[i].x;
// magnetic susceptibility is taken as one here
// rotate the local coordinate system to the regular status
abs_b_[i] = mag_v.rotate((90.0 - loc_s_[i].lat)*GCTL_Pi/180.0, 0.0, (90.0 + loc_s_[i].lon)*GCTL_Pi/180.0);
}
return;
}
void gctl::read_IGRF_table(std::string file, array<IGRF_para> &IGRFs, int head_record, std::string ext_f)
{
std::ifstream infile;
gctl::open_infile(infile, file, ext_f);
std::vector<IGRF_para> vec_para;
IGRF_para tmp_para;
std::string err_str, tmp_str;
std::stringstream tmp_ss;
std::string date_str, alti_str, dd_str, dm_str, id_str, im_str;
// 头信息就跳过
for (size_t i = 0; i < head_record; i++)
{
getline(infile, tmp_str);
}
while (getline(infile, tmp_str))
{
//Date Coord-System Altitude Latitude Longitude D_deg D_min I_deg I_min H_nT X_nT Y_nT Z_nT F_nT dD_min dI_min dH_nT dX_nT dY_nT dZ_nT dF_nT
//2017,6,15 D M4000.00 30.0167 105.017 -2d 16m 46d 52m 34358.9 34332.2 -1354.1 36667.2 50249.6 -3.8 5.6 -13.2 -14.8 -37.9 105.0 67.6
tmp_ss.clear();
tmp_ss.str(tmp_str);
tmp_ss >> date_str >> tmp_para.CSystem >> alti_str
>> tmp_para.Latitude >> tmp_para.Longitude
>> dd_str >> dm_str >> id_str >> im_str
>> tmp_para.H_nT >> tmp_para.X_nT >> tmp_para.Y_nT
>> tmp_para.Z_nT >> tmp_para.F_nT >> tmp_para.dD_min
>> tmp_para.dI_min >> tmp_para.dH_nT >> tmp_para.dX_nT
>> tmp_para.dY_nT >> tmp_para.dZ_nT >> tmp_para.dF_nT;
if (1 != sscanf(dd_str.c_str(), "%dd", &tmp_para.D_deg) ||
1 != sscanf(dm_str.c_str(), "%dm", &tmp_para.D_min) ||
1 != sscanf(id_str.c_str(), "%dd", &tmp_para.I_deg) ||
1 != sscanf(im_str.c_str(), "%dm", &tmp_para.I_min) ||
2 != sscanf(alti_str.c_str(), "%c%lf", &tmp_para.AltiCode, &tmp_para.Altitude))
{
throw gctl::invalid_argument("[gctl::read_IGRF_table] Wrong format: " + tmp_str);
}
if (3 != sscanf(date_str.c_str(), "%d,%d,%d", &tmp_para.Year, &tmp_para.Month, &tmp_para.Day))
{
double deci_year;
if (1 != sscanf(date_str.c_str(), "%lf", &deci_year))
{
throw gctl::invalid_argument("[gctl::read_IGRF_table] Wrong format: " + tmp_str);
}
decimal_year2date(deci_year, tmp_para.Year, tmp_para.Month, tmp_para.Day);
}
tmp_para.I = abs(tmp_para.I_deg) + tmp_para.I_min/60.0;
tmp_para.D = abs(tmp_para.D_deg) + tmp_para.D_min/60.0;
if (tmp_para.I_deg < 0) tmp_para.I *= -1;
if (tmp_para.D_deg < 0) tmp_para.D *= -1;
vec_para.push_back(tmp_para);
}
infile.close();
IGRFs.input(vec_para);
destroy_vector(vec_para);
return;
}
void gctl::read_Swarm_shc(std::string file, array<shc_data> &SHCs, int &spline_odr, int &sample_num)
{
dsv_io tio;
tio.head_number(2);
tio.load_text(file);
// parse the head records
int n, N, tnum;
std::vector<double> time_snaps;
std::vector<std::string> rcd = tio.head_records();
parse_string_to_value(rcd[0], ' ', true, n, N, tnum, spline_odr, sample_num);
parse_string_to_vector(rcd[1], ' ', time_snaps);
array<int> nid, mid;
array<double> vals;
int rnum = tio.row_number();
tio.get_column(nid, 1);
tio.get_column(mid, 2);
// store coefficients
int id, shc_num;
SHCs.resize(tnum);
for (size_t i = 0; i < tnum; i++)
{
SHCs[i].ns = n;
SHCs[i].ms = 0;
SHCs[i].ne = N;
SHCs[i].me = N;
SHCs[i].time = time_snaps[i];
shc_num = (N + 1)*(N + 2)/2;
SHCs[i].Snm.resize(shc_num, 0.0);
SHCs[i].Cnm.resize(shc_num, 0.0);
tio.get_column(vals, i + 3);
for (size_t j = 0; j < rnum; j++)
{
if (mid[j] > 0)
{
id = nid[j]*(nid[j] + 1)/2 + mid[j];
SHCs[i].Snm[id] = vals[j];
SHCs[i].Cnm[id] = vals[j + 1];
}
else if (mid[j] == 0)
{
id = nid[j]*(nid[j] + 1)/2;
SHCs[i].Snm[id] = vals[j];
SHCs[i].Cnm[id] = 0.0;
}
}
}
return;
}
void gctl::save_Swarm_shc(std::string file, const array<shc_data> &SHCs, int spline_odr, int sample_num, std::string info)
{
time_t now = time(0);
char* dt = ctime(&now);
std::ofstream ofile;
open_outfile(ofile, file + ".shc", ".txt");
ofile << "# " << info << std::endl;
ofile << "# Generated on " << dt;
int s = SHCs[0].ns, S = SHCs[0].ne;
int c = SHCs.size();
ofile << s << " " << S << " " << c << " " << spline_odr << " " << sample_num << std::endl;
ofile << SHCs[0].time;
for (size_t i = 1; i < SHCs.size(); i++)
{
ofile << " " << SHCs[i].time;
}
for (size_t n = s; n <= S; n++)
{
for (size_t m = 0; m <= n; m++)
{
if (m == 0)
{
ofile << "\n" << n << " " << m;
for (size_t i = 0; i < c; i++)
{
ofile << " " << SHCs[i].coeff_s(n, m);
}
}
else
{
ofile << "\n" << n << " " << m;
for (size_t i = 0; i < c; i++)
{
ofile << " " << SHCs[i].coeff_s(n, m);
}
ofile << "\n" << n << " -" << m;
for (size_t i = 0; i < c; i++)
{
ofile << " " << SHCs[i].coeff_c(n, m);
}
}
}
}
return;
}
void gctl::magnetic_components2deltaT(const _1d_array &Hax, const _1d_array &Hay, const _1d_array &Za,
_1d_array &deltaT, double T0_inclina, double T0_declina)
{
if (Hax.size() != Hay.size() || Hay.size() != Za.size())
{
throw std::runtime_error("[gctl::magnetic_components2deltaT] Unmatched components' size.");
}
// note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one.
double hax_f = cos(GCTL_Pi*T0_inclina/180.0)*sin(GCTL_Pi*T0_declina/180.0);
double hay_f = cos(GCTL_Pi*T0_inclina/180.0)*cos(GCTL_Pi*T0_declina/180.0);
double za_f = sin(GCTL_Pi*T0_inclina/180.0);
deltaT.resize(Hax.size());
for (size_t i = 0; i < Hax.size(); i++)
{
deltaT[i] = hax_f*Hax[i] + hay_f*Hay[i] + za_f*Za[i];
}
return;
}
void gctl::magnetic_components2deltaT(const array<point3dc> &Mag_components, _1d_array &deltaT, double T0_inclina, double T0_declina)
{
// note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one.
double hax_f = cos(GCTL_Pi*T0_inclina/180.0)*sin(GCTL_Pi*T0_declina/180.0);
double hay_f = cos(GCTL_Pi*T0_inclina/180.0)*cos(GCTL_Pi*T0_declina/180.0);
double za_f = sin(GCTL_Pi*T0_inclina/180.0);
deltaT.resize(Mag_components.size());
for (size_t i = 0; i < Mag_components.size(); i++)
{
deltaT[i] = hax_f*Mag_components[i].x + hay_f*Mag_components[i].y + za_f*Mag_components[i].z;
}
return;
}
void gctl::magnetic_tensors2deltaTs(const array<tensor> &Mag_tensors, array<point3dc> &deltaTs, double T0_inclina, double T0_declina)
{
// note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one.
double hax_f = cos(GCTL_Pi*T0_inclina/180.0)*sin(GCTL_Pi*T0_declina/180.0);
double hay_f = cos(GCTL_Pi*T0_inclina/180.0)*cos(GCTL_Pi*T0_declina/180.0);
double za_f = sin(GCTL_Pi*T0_inclina/180.0);
deltaTs.resize(Mag_tensors.size());
for (size_t i = 0; i < Mag_tensors.size(); i++)
{
deltaTs[i].x = hax_f*Mag_tensors[i][0][0] + hay_f*Mag_tensors[i][0][1] + za_f*Mag_tensors[i][0][2];
deltaTs[i].y = hax_f*Mag_tensors[i][0][1] + hay_f*Mag_tensors[i][1][1] + za_f*Mag_tensors[i][1][2];
deltaTs[i].z = hax_f*Mag_tensors[i][0][2] + hay_f*Mag_tensors[i][1][2] + za_f*Mag_tensors[i][2][2];
}
return;
}
void gctl::magnetic_components2deltaT_sph(const array<point3dc> &Mag_components, const _1d_array &T0_inclina, const _1d_array &T0_declina, _1d_array &deltaT)
{
// note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one.
deltaT.resize(Mag_components.size());
for (size_t i = 0; i < Mag_components.size(); i++)
{
double hax_f = cos(GCTL_Pi*T0_inclina[i]/180.0)*sin(GCTL_Pi*T0_declina[i]/180.0);
double hay_f = cos(GCTL_Pi*T0_inclina[i]/180.0)*cos(GCTL_Pi*T0_declina[i]/180.0);
double za_f = sin(GCTL_Pi*T0_inclina[i]/180.0);
// note here Mag_components[i].x is the reversed radial component
// Mag_components[i].y is the latitudinal component (south pointing). to use it in a local cratesian coordinate, we need to reverse it
// Mag_components[i].z is the longtidinal component (east pointing)
deltaT[i] = hax_f*Mag_components[i].z - hay_f*Mag_components[i].y + za_f*Mag_components[i].x;
}
return;
}
double gctl::magnetic_components2deltaT_sph(const point3dc &Mag_components, double T0_inclina, double T0_declina)
{
double hax_f = cos(GCTL_Pi*T0_inclina/180.0)*sin(GCTL_Pi*T0_declina/180.0);
double hay_f = cos(GCTL_Pi*T0_inclina/180.0)*cos(GCTL_Pi*T0_declina/180.0);
double za_f = sin(GCTL_Pi*T0_inclina/180.0);
// note here Mag_components[i].x is the reversed radial component
// Mag_components[i].y is the latitudinal component (south pointing). to use it in a local cratesian coordinate, we need to reverse it
// Mag_components[i].z is the longtidinal component (east pointing)
return hax_f*Mag_components.z - hay_f*Mag_components.y + za_f*Mag_components.x;
}
void gctl::magnetic_tensors2deltaTs_sph(const array<tensor> &Mag_tensors, const _1d_array &T0_inclina, const _1d_array &T0_declina, array<point3dc> &deltaTs)
{
// note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one.
deltaTs.resize(Mag_tensors.size());
for (size_t i = 0; i < Mag_tensors.size(); i++)
{
double hax_f = cos(GCTL_Pi*T0_inclina[i]/180.0)*sin(GCTL_Pi*T0_declina[i]/180.0);
double hay_f = cos(GCTL_Pi*T0_inclina[i]/180.0)*cos(GCTL_Pi*T0_declina[i]/180.0);
double za_f = sin(GCTL_Pi*T0_inclina[i]/180.0);
// note here Mag_tensors[i][:][0] is the reversed radial component
// Mag_components[i][:][1] is the latitudinal component (south pointing). to use it in a local cratesian coordinate, we need to reverse it
// Mag_components[i][:][2] is the longtidinal component (east pointing)
deltaTs[i].x = za_f*Mag_tensors[i][0][0] - hay_f*Mag_tensors[i][0][1] + hax_f*Mag_tensors[i][0][2];
deltaTs[i].y = za_f*Mag_tensors[i][0][1] - hay_f*Mag_tensors[i][1][1] + hax_f*Mag_tensors[i][1][2];
deltaTs[i].z = za_f*Mag_tensors[i][0][2] - hay_f*Mag_tensors[i][1][2] + hax_f*Mag_tensors[i][2][2];
}
return;
}
void gctl::schmidt_legendre(double co_lati, int n_max, array<double> &P, array<double> &dP)
{
if (n_max <= 0) throw std::runtime_error("[gctl::schmidt_legendre] Invalid paramters.");
double cos_lat = cosd(co_lati);
if (abs(cos_lat) == 1.0) throw std::runtime_error("[gctl::schmidt_legendre] Derivative cannot be calculated at poles.");
double pm2, pm1, pmm, plm, rescalem, z, scalef;
int k, kstart, m, n, NumTerms;
NumTerms = ((n_max + 1) * (n_max + 2) / 2);
P.resize(NumTerms, 0.0);
dP.resize(NumTerms, 0.0);
_1d_array f1(NumTerms + 1), f2(NumTerms + 1), PreSqr(NumTerms + 1);
scalef = 1.0e-280;
for(n = 0; n <= 2 * n_max + 1; ++n)
{
PreSqr[n] = sqrt((double) (n));
}
k = 2;
for(n = 2; n <= n_max; n++)
{
k = k + 1;
f1[k] = (double) (2 * n - 1) / (double) (n);
f2[k] = (double) (n - 1) / (double) (n);
for(m = 1; m <= n - 2; m++)
{
k = k + 1;
f1[k] = (double) (2 * n - 1) / PreSqr[n + m] / PreSqr[n - m];
f2[k] = PreSqr[n - m - 1] * PreSqr[n + m - 1] / PreSqr[n + m] / PreSqr[n - m];
}
k = k + 2;
}
/*z = sin (geocentric latitude) */
z = sqrt((1.0 - cos_lat)*(1.0 + cos_lat));
pm2 = 1.0;
P[0] = 1.0;
dP[0] = 0.0;
pm1 = cos_lat;
P[1] = pm1;
dP[1] = z;
k = 1;
for(n = 2; n <= n_max; n++)
{
k = k + n;
plm = f1[k] * cos_lat * pm1 - f2[k] * pm2;
P[k] = plm;
dP[k] = (double) (n) * (pm1 - cos_lat * plm) / z;
pm2 = pm1;
pm1 = plm;
}
pmm = PreSqr[2] * scalef;
rescalem = 1.0 / scalef;
kstart = 0;
for(m = 1; m <= n_max - 1; ++m)
{
rescalem = rescalem*z;
/* Calculate Pcup(m,m)*/
kstart = kstart + m + 1;
pmm = pmm * PreSqr[2 * m + 1] / PreSqr[2 * m];
P[kstart] = pmm * rescalem / PreSqr[2 * m + 1];
dP[kstart] = -((double) (m) * cos_lat * P[kstart] / z);
pm2 = pmm / PreSqr[2 * m + 1];
/* Calculate Pcup(m+1,m)*/
k = kstart + m + 1;
pm1 = cos_lat * PreSqr[2 * m + 1] * pm2;
P[k] = pm1*rescalem;
dP[k] = ((pm2 * rescalem) * PreSqr[2 * m + 1] - cos_lat * (double) (m + 1) * P[k]) / z;
/* Calculate Pcup(n,m)*/
for(n = m + 2; n <= n_max; ++n)
{
k = k + n;
plm = cos_lat * f1[k] * pm1 - f2[k] * pm2;
P[k] = plm*rescalem;
dP[k] = (PreSqr[n + m] * PreSqr[n - m] * (pm1 * rescalem) - (double) (n) * cos_lat * P[k]) / z;
pm2 = pm1;
pm1 = plm;
}
}
/* Calculate Pcup(nMax,nMax)*/
rescalem = rescalem*z;
kstart = kstart + m + 1;
pmm = pmm / PreSqr[2 * n_max];
P[kstart] = pmm * rescalem;
dP[kstart] = -(double) (n_max) * cos_lat * P[kstart] / z;
return;
}
void gctl::power_spectrum(array<double> &P, const array<double> &C, const array<double> &S, double R, double r, int n, int N)
{
if (n < 0 || n >= N || C.size() < (N + 1)*(N + 2)/2 || S.size() < (N + 1)*(N + 2)/2)
{
throw std::runtime_error("[gctl::power_spectrum] Invalid input parameters.");
}
P.resize(N - n + 1, 0);
int id;
for (int i = n; i < N + 1; i++)
{
id = i*(i + 1)/2;
for (int j = 0; j < i + 1; j++)
{
P[i - n] += (C[id + j]*C[id + j] + S[id + j]*S[id + j]);
}
P[i - n] *= (i + 1)*pow(R/r, 2*i + 4);
}
return;
}