942 lines
29 KiB
C++
942 lines
29 KiB
C++
/********************************************************
|
|
* ██████╗ ██████╗████████╗██╗
|
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
|
* ██║ ███╗██║ ██║ ██║
|
|
* ██║ ██║██║ ██║ ██║
|
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
|
* Geophysical Computational Tools & Library (GCTL)
|
|
*
|
|
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
|
|
*
|
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, either version 2
|
|
* of the License, or (at your option) any later version. You should have
|
|
* received a copy of the GNU Lesser General Public License along with this
|
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
|
* the GCTL, please consider the option to obtain a commercial license for a
|
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
|
* to include some description of your company and the realm of its activities.
|
|
* Also add information on how to contact you by electronic and paper mail.
|
|
******************************************************/
|
|
|
|
#include "mkernel_tetrahedron_Ren2017.h"
|
|
#include "cmath"
|
|
|
|
#define GCTL_MAG_TETRA_TOL 1e-16
|
|
|
|
void gctl::callink_magnetic_para_direct(array<magtet_ren17> &in_tet, array<magtet_para_ren17> &out_para, const array<point3dc> &magz)
|
|
{
|
|
point3dc v1, v2, v3, ne, nf;
|
|
|
|
out_para.resize(in_tet.size());
|
|
for (int i = 0; i < in_tet.size(); ++i)
|
|
{
|
|
if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr ||
|
|
in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr)
|
|
{
|
|
throw runtime_error("Invalid vertex pointer. From callink_magnetic_para(...)");
|
|
}
|
|
|
|
for (int f = 0; f < 4; ++f)
|
|
{
|
|
v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0);
|
|
v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0);
|
|
nf = cross(v1, v2).normal();
|
|
out_para[i].nf[f] = nf;
|
|
|
|
for (int e = 0; e < 3; ++e)
|
|
{
|
|
v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e);
|
|
ne = cross(v3, nf).normal();
|
|
out_para[i].ne[e+f*3] = ne;
|
|
out_para[i].te[e+f*3] = cross(nf, ne).normal();
|
|
}
|
|
|
|
out_para[i].mag_amp[f] = dot(magz[i], nf);
|
|
}
|
|
|
|
in_tet[i].att = out_para.get(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::callink_magnetic_para_earth(array<magtet_ren17> &in_tet, array<magtet_para_ren17> &out_para,
|
|
double inclina_deg, double declina_deg, double field_tense)
|
|
{
|
|
if (declina_deg < -180.0 || declina_deg > 180.0 ||
|
|
inclina_deg < -90 || inclina_deg > 90 || field_tense < 0.0)
|
|
{
|
|
throw invalid_argument("Invalid parameters. From gctl::callink_magnetic_para(...)");
|
|
}
|
|
|
|
point3dc v1, v2, v3, ne, nf, mag_z;
|
|
double I = inclina_deg*GCTL_Pi/180.0;
|
|
double A = (90 - declina_deg)*GCTL_Pi/180.0;
|
|
|
|
out_para.resize(in_tet.size());
|
|
for (int i = 0; i < in_tet.size(); ++i)
|
|
{
|
|
if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr ||
|
|
in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr)
|
|
{
|
|
throw runtime_error("Invalid vertex pointer. From callink_magnetic_para(...)");
|
|
}
|
|
|
|
// magnetic susceptibility is taken as one here
|
|
mag_z.x = cos(I)*cos(A)*field_tense;
|
|
mag_z.y = cos(I)*sin(A)*field_tense;
|
|
mag_z.z = sin(I)*field_tense;
|
|
|
|
for (int f = 0; f < 4; ++f)
|
|
{
|
|
v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0);
|
|
v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0);
|
|
nf = cross(v1, v2).normal();
|
|
out_para[i].nf[f] = nf;
|
|
|
|
for (int e = 0; e < 3; ++e)
|
|
{
|
|
v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e);
|
|
ne = cross(v3, nf).normal();
|
|
out_para[i].ne[e+f*3] = ne;
|
|
out_para[i].te[e+f*3] = cross(nf, ne).normal();
|
|
}
|
|
|
|
out_para[i].mag_amp[f] = dot(mag_z, nf);
|
|
}
|
|
|
|
in_tet[i].att = out_para.get(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::callink_magnetic_para_earth_sph(array<magtet_ren17> &in_tet, array<magtet_para_ren17> &out_para,
|
|
double inclina_deg, double declina_deg, array<point3dc> *mag_vec, double field_tense)
|
|
{
|
|
if (declina_deg < -180.0 || declina_deg > 180.0 ||
|
|
inclina_deg < -90 || inclina_deg > 90 || field_tense < 0.0)
|
|
{
|
|
throw invalid_argument("Invalid parameters. From gctl::callink_magnetic_para_earth_sph(...)");
|
|
}
|
|
|
|
point3dc v1, v2, v3, ne, nf, mag_z;
|
|
point3ds s;
|
|
|
|
double I = inclina_deg*M_PI/180.0;
|
|
double A = declina_deg*M_PI/180.0;
|
|
|
|
if (mag_vec != nullptr) mag_vec->resize(in_tet.size());
|
|
out_para.resize(in_tet.size());
|
|
for (int i = 0; i < in_tet.size(); ++i)
|
|
{
|
|
if (in_tet[i].vert[0] == nullptr || in_tet[i].vert[1] == nullptr ||
|
|
in_tet[i].vert[2] == nullptr || in_tet[i].vert[3] == nullptr)
|
|
{
|
|
throw runtime_error("Invalid vertex pointer. From callink_magnetic_para_earth_sph(...)");
|
|
}
|
|
|
|
// magnetization vector at the local coordinates
|
|
// note here the postive direction of the inclination angle is downward
|
|
// note here the postive direction of the declination angle is clockwise
|
|
mag_z.x = cos(I)*sin(A);
|
|
mag_z.y = cos(I)*cos(A);
|
|
mag_z.z = -1.0*sin(I);
|
|
|
|
s = c2s(in_tet[i].center());
|
|
// magnetic susceptibility is taken as one here
|
|
// rotate the local coordinate system to the regular status
|
|
mag_z = field_tense * mag_z.rotate((90.0 - s.lat)*M_PI/180.0, 0.0, (90.0 + s.lon)*M_PI/180.0).normal();
|
|
if (mag_vec != nullptr) mag_vec->at(i) = mag_z;
|
|
|
|
for (int f = 0; f < 4; ++f)
|
|
{
|
|
v1 = *in_tet[i].fget(f, 1) - *in_tet[i].fget(f, 0);
|
|
v2 = *in_tet[i].fget(f, 2) - *in_tet[i].fget(f, 0);
|
|
nf = cross(v1, v2).normal();
|
|
out_para[i].nf[f] = nf;
|
|
|
|
for (int e = 0; e < 3; ++e)
|
|
{
|
|
v3 = *in_tet[i].fget(f, (e+1)%3) - *in_tet[i].fget(f, e);
|
|
ne = cross(v3, nf).normal();
|
|
out_para[i].ne[e+f*3] = ne;
|
|
out_para[i].te[e+f*3] = cross(nf, ne).normal();
|
|
}
|
|
|
|
out_para[i].mag_amp[f] = dot(mag_z, nf);
|
|
}
|
|
|
|
in_tet[i].att = out_para.get(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::callink_magnetic_para_earth_sph(magtet_ren17 &in_tet, magtet_para_ren17 &out_para,
|
|
double inclina_deg, double declina_deg, point3dc *mag_vec, double field_tense)
|
|
{
|
|
if (declina_deg < -180.0 || declina_deg > 180.0 || inclina_deg < -90 || inclina_deg > 90 || field_tense < 0.0)
|
|
{
|
|
throw invalid_argument("[gctl::callink_magnetic_para_earth_sph] Invalid parameters.");
|
|
}
|
|
|
|
point3dc v1, v2, v3, ne, nf, mag_z;
|
|
point3ds s;
|
|
|
|
double I = inclina_deg*M_PI/180.0;
|
|
double A = declina_deg*M_PI/180.0;
|
|
|
|
if (in_tet.vert[0] == nullptr || in_tet.vert[1] == nullptr || in_tet.vert[2] == nullptr || in_tet.vert[3] == nullptr)
|
|
{
|
|
throw runtime_error("[gctl::callink_magnetic_para_earth_sph] Invalid vertex pointer.");
|
|
}
|
|
|
|
// magnetization vector at the local coordinates
|
|
// note here the postive direction of the inclination angle is downward
|
|
// note here the postive direction of the declination angle is clockwise
|
|
mag_z.x = cos(I)*sin(A);
|
|
mag_z.y = cos(I)*cos(A);
|
|
mag_z.z = -1.0*sin(I);
|
|
|
|
s = c2s(in_tet.center());
|
|
// magnetic susceptibility is taken as one here
|
|
// rotate the local coordinate system to the regular status
|
|
mag_z = field_tense * mag_z.rotate((90.0 - s.lat)*M_PI/180.0, 0.0, (90.0 + s.lon)*M_PI/180.0).normal();
|
|
if (mag_vec != nullptr) *mag_vec = mag_z;
|
|
|
|
for (int f = 0; f < 4; ++f)
|
|
{
|
|
v1 = *in_tet.fget(f, 1) - *in_tet.fget(f, 0);
|
|
v2 = *in_tet.fget(f, 2) - *in_tet.fget(f, 0);
|
|
nf = cross(v1, v2).normal();
|
|
out_para.nf[f] = nf;
|
|
|
|
for (int e = 0; e < 3; ++e)
|
|
{
|
|
v3 = *in_tet.fget(f, (e+1)%3) - *in_tet.fget(f, e);
|
|
ne = cross(v3, nf).normal();
|
|
out_para.ne[e+f*3] = ne;
|
|
out_para.te[e+f*3] = cross(nf, ne).normal();
|
|
}
|
|
|
|
out_para.mag_amp[f] = dot(mag_z, nf);
|
|
}
|
|
|
|
in_tet.att = &out_para;
|
|
return;
|
|
}
|
|
|
|
// declare algorithm for individual element and observation point
|
|
double magkernel_tetrahedron_potential_sig(const gctl::magtet_ren17 &ele_ptr, const gctl::point3dc &op_ptr);
|
|
gctl::point3dc magkernel_tetrahedron_gradient_sig(const gctl::magtet_ren17 &ele_ptr, const gctl::point3dc &op_ptr);
|
|
gctl::tensor magkernel_tetrahedron_tensor_sig(const gctl::magtet_ren17 &ele_ptr, const gctl::point3dc &op_ptr);
|
|
|
|
// define functions
|
|
void gctl::magkernel(matrix<double> &out_kernel, const array<magtet_ren17> &ele,
|
|
const array<point3dc> &obsp, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
gctl::progress_bar bar(o_size, "magkernel_potential");
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
|
|
|
|
#pragma omp parallel for private (j) schedule(guided)
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
out_kernel[i][j] = magkernel_tetrahedron_potential_sig(ele[j], obsp[i]);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magkernel(matrix<point3dc> &out_kernel, const array<magtet_ren17> &ele,
|
|
const array<point3dc> &obsp, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
point3dc pc;
|
|
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
gctl::progress_bar bar(o_size, "magkernel_gradient");
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
|
|
|
|
#pragma omp parallel for private (j, pc) schedule(guided)
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
pc = magkernel_tetrahedron_gradient_sig(ele[j], obsp[i]);
|
|
out_kernel[i][j] = pc;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magkernel(matrix<tensor> &out_kernel, const array<magtet_ren17> &ele,
|
|
const array<point3dc> &obsp, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
gctl::progress_bar bar(o_size, "magkernel_tensor");
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
|
|
|
|
#pragma omp parallel for private (j) schedule(guided)
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
out_kernel[i][j] = magkernel_tetrahedron_tensor_sig(ele[j], obsp[i]);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magkernel(matrix<double> &out_kernel, const array<magtet_ren17> &ele, const array<point3dc> &obsp,
|
|
double geo_declina, double geo_inclina, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
// note that we use regular right-hand cartesian coordinates here, not the reversed z-axis one.
|
|
double hax_f = cos(M_PI*geo_inclina/180.0)*sin(M_PI*geo_declina/180.0);
|
|
double hay_f = cos(M_PI*geo_inclina/180.0)*cos(M_PI*geo_declina/180.0);
|
|
double za_f = sin(M_PI*geo_inclina/180.0);
|
|
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
point3dc tmp_grad;
|
|
gctl::progress_bar bar(o_size, "magkernel_deltaT");
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
|
|
|
|
#pragma omp parallel for private (j, tmp_grad) shared (hax_f, hay_f, za_f) schedule(guided)
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
tmp_grad = magkernel_tetrahedron_gradient_sig(ele[j], obsp[i]);
|
|
out_kernel[i][j] = hax_f*tmp_grad.x + hay_f*tmp_grad.y + za_f*tmp_grad.z;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magkernel(matrix<point3dc> &out_kernel, const array<magtet_ren17> &ele,
|
|
const array<point3ds> &obsp, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
point3dc obsp_c;
|
|
tensor R;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
gctl::progress_bar bar(o_size, "magkernel_gradient");
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
|
|
|
|
#pragma omp parallel for private (j, obsp_c) schedule(guided)
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
obsp_c = s2c(obsp[i]);
|
|
out_kernel[i][j] = magkernel_tetrahedron_gradient_sig(ele[j], obsp_c);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
R[0][0] = sin((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[0][1] = sin((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[0][2] = cos((0.5-obsp[i].lat/180.0)*M_PI);
|
|
|
|
R[1][0] = cos((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[1][1] = cos((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[1][2] = -1.0*sin((0.5-obsp[i].lat/180.0)*M_PI);
|
|
|
|
R[2][0] = -1.0*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[2][1] = cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[2][2] = 0.0;
|
|
|
|
#pragma omp parallel for private (j) schedule(guided)
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
out_kernel[i][j] = R * out_kernel[i][j];
|
|
out_kernel[i][j].x *= -1.0;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magkernel(matrix<tensor> &out_kernel, const array<magtet_ren17> &ele,
|
|
const array<point3ds> &obsp, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
point3dc obsp_c;
|
|
tensor R, R_T;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
gctl::progress_bar bar(o_size, "magkernel_tensor");
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(i);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(i);
|
|
|
|
#pragma omp parallel for private (j, obsp_c) schedule(guided)
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
obsp_c = s2c(obsp[i]);
|
|
out_kernel[i][j] = magkernel_tetrahedron_tensor_sig(ele[j], obsp_c);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
R[0][0] = sin((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[0][1] = sin((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[0][2] = cos((0.5-obsp[i].lat/180.0)*M_PI);
|
|
|
|
R[1][0] = cos((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[1][1] = cos((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[1][2] = -1.0*sin((0.5-obsp[i].lat/180.0)*M_PI);
|
|
|
|
R[2][0] = -1.0*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[2][1] = cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[2][2] = 0.0;
|
|
|
|
R_T = R.transpose();
|
|
|
|
#pragma omp parallel for private (j) schedule(guided)
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
out_kernel[i][j] = R*(out_kernel[i][j]*R_T);
|
|
out_kernel[i][j][0][0] *= -1.0;
|
|
out_kernel[i][j][0][1] *= -1.0;
|
|
out_kernel[i][j][0][2] *= -1.0;
|
|
out_kernel[i][j][1][0] *= -1.0;
|
|
out_kernel[i][j][2][0] *= -1.0;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
gctl::point3dc gctl::magkernel_single(const magtet_ren17 &ele, const point3ds &obsp)
|
|
{
|
|
tensor R;
|
|
R[0][0] = sin((0.5-obsp.lat/180.0)*M_PI)*cos((2.0+obsp.lon/180.0)*M_PI);
|
|
R[0][1] = sin((0.5-obsp.lat/180.0)*M_PI)*sin((2.0+obsp.lon/180.0)*M_PI);
|
|
R[0][2] = cos((0.5-obsp.lat/180.0)*M_PI);
|
|
|
|
R[1][0] = cos((0.5-obsp.lat/180.0)*M_PI)*cos((2.0+obsp.lon/180.0)*M_PI);
|
|
R[1][1] = cos((0.5-obsp.lat/180.0)*M_PI)*sin((2.0+obsp.lon/180.0)*M_PI);
|
|
R[1][2] = -1.0*sin((0.5-obsp.lat/180.0)*M_PI);
|
|
|
|
R[2][0] = -1.0*sin((2.0+obsp.lon/180.0)*M_PI);
|
|
R[2][1] = cos((2.0+obsp.lon/180.0)*M_PI);
|
|
R[2][2] = 0.0;
|
|
|
|
point3dc obsp_c = s2c(obsp);
|
|
point3dc out_k = magkernel_tetrahedron_gradient_sig(ele, obsp_c);
|
|
|
|
out_k = R * out_k;
|
|
out_k.x *= -1.0;
|
|
return out_k;
|
|
}
|
|
|
|
void gctl::magobser(array<double> &out_obs, const array<magtet_ren17> &ele, const array<point3dc> &obsp, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
gctl::progress_bar bar(e_size, "magobser_potential");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] += magkernel_tetrahedron_potential_sig(ele[j], obsp[i]);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magobser(array<point3dc> &out_obs, const array<magtet_ren17> &ele, const array<point3dc> &obsp, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
point3dc pc;
|
|
|
|
out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "magobser_gradient");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i, pc) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
pc = magkernel_tetrahedron_gradient_sig(ele[j], obsp[i]);
|
|
out_obs[i] = out_obs[i] + pc;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magobser(array<tensor> &out_obs, const array<magtet_ren17> &ele, const array<point3dc> &obsp, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, tensor(0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "magobser_tensor");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] = out_obs[i] + magkernel_tetrahedron_tensor_sig(ele[j], obsp[i]);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magobser(array<double> &out_obs, const array<magtet_ren17> &ele, const array<point3dc> &obsp,
|
|
const array<double> &sus, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
gctl::progress_bar bar(e_size, "magobser_potential");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] += sus[j] * magkernel_tetrahedron_potential_sig(ele[j], obsp[i]);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magobser(array<point3dc> &out_obs, const array<magtet_ren17> &ele, const array<point3dc> &obsp,
|
|
const array<double> &sus, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
point3dc pc;
|
|
|
|
out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "magobser_gradient");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i, pc) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
pc = sus[j] * magkernel_tetrahedron_gradient_sig(ele[j], obsp[i]);
|
|
out_obs[i] = out_obs[i] + pc;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magobser(array<tensor> &out_obs, const array<magtet_ren17> &ele, const array<point3dc> &obsp,
|
|
const array<double> &sus, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, tensor(0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "magobser_tensor");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
out_obs[i] = out_obs[i] + sus[j] * magkernel_tetrahedron_tensor_sig(ele[j], obsp[i]);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magobser(array<point3dc> &out_obs, const array<magtet_ren17> &ele, const array<point3ds> &obsp,
|
|
const array<double> &sus, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
point3dc obsp_c;
|
|
gctl::tensor R;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, point3dc(0.0, 0.0, 0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "magobser_gradient");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i, obsp_c) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
obsp_c = s2c(obsp[i]);
|
|
out_obs[i] = out_obs[i] + sus[j] * magkernel_tetrahedron_gradient_sig(ele[j], obsp_c);
|
|
}
|
|
}
|
|
|
|
#pragma omp parallel for private (i, R) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
R[0][0] = sin((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[0][1] = sin((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[0][2] = cos((0.5-obsp[i].lat/180.0)*M_PI);
|
|
|
|
R[1][0] = cos((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[1][1] = cos((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[1][2] = -1.0*sin((0.5-obsp[i].lat/180.0)*M_PI);
|
|
|
|
R[2][0] = -1.0*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[2][1] = cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[2][2] = 0.0;
|
|
|
|
out_obs[i] = R * out_obs[i];
|
|
out_obs[i].x *= -1.0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::magobser(array<tensor> &out_obs, const array<magtet_ren17> &ele, const array<point3ds> &obsp,
|
|
const array<double> &sus, verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
point3dc obsp_c;
|
|
gctl::tensor R, R_T;
|
|
int o_size = obsp.size();
|
|
int e_size = ele.size();
|
|
|
|
out_obs.resize(o_size, tensor(0.0));
|
|
|
|
gctl::progress_bar bar(e_size, "magobser_tensor");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
#pragma omp parallel for private (i, obsp_c) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
obsp_c = s2c(obsp[i]);
|
|
out_obs[i] = out_obs[i] + sus[j] * magkernel_tetrahedron_tensor_sig(ele[j], obsp_c);
|
|
}
|
|
}
|
|
|
|
#pragma omp parallel for private (i, R, R_T) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
R[0][0] = sin((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[0][1] = sin((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[0][2] = cos((0.5-obsp[i].lat/180.0)*M_PI);
|
|
|
|
R[1][0] = cos((0.5-obsp[i].lat/180.0)*M_PI)*cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[1][1] = cos((0.5-obsp[i].lat/180.0)*M_PI)*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[1][2] = -1.0*sin((0.5-obsp[i].lat/180.0)*M_PI);
|
|
|
|
R[2][0] = -1.0*sin((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[2][1] = cos((2.0+obsp[i].lon/180.0)*M_PI);
|
|
R[2][2] = 0.0;
|
|
|
|
R_T = R.transpose();
|
|
|
|
out_obs[i] = R*(out_obs[i]*R_T);
|
|
out_obs[i][0][0] *= -1.0;
|
|
out_obs[i][0][1] *= -1.0;
|
|
out_obs[i][0][2] *= -1.0;
|
|
out_obs[i][1][0] *= -1.0;
|
|
out_obs[i][2][0] *= -1.0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
double magkernel_tetrahedron_potential_sig(const gctl::magtet_ren17 &tet, const gctl::point3dc &site)
|
|
{
|
|
double Rij_minus, Rij_plus, Sij_plus, Sij_minus, Rij0, mij0, wi0;
|
|
double part1, part2, k0, absw, beta;
|
|
gctl::point3dc oi;
|
|
|
|
// get attribute pointer
|
|
if (tet.att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_tetrahedron_potential_sig(...)");
|
|
gctl::magtet_para_ren17 *mpara = tet.att;
|
|
|
|
double out_pot = 0.0;
|
|
for (int f = 0; f < 4; ++f)
|
|
{
|
|
k0 = 0.0;
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
Rij_minus = (site - *tet.fget(f, j)).module();
|
|
Rij_plus = (site - *tet.fget(f, (j+1)%3)).module();
|
|
|
|
if (j == 0)
|
|
{
|
|
wi0 = gctl::dot(site - *tet.fget(f, j), mpara->nf[f]);
|
|
absw = std::abs(wi0);
|
|
}
|
|
|
|
oi = site - wi0*mpara->nf[f];
|
|
Sij_minus = gctl::dot(*tet.fget(f, j) - oi, mpara->te[3*f+j]);
|
|
Sij_plus = gctl::dot(*tet.fget(f, (j+1)%3) - oi, mpara->te[3*f+j]);
|
|
mij0 = gctl::dot(*tet.fget(f, j) - oi, mpara->ne[3*f+j]);
|
|
Rij0 = std::sqrt(wi0*wi0 + mij0*mij0);
|
|
|
|
part2 = 0.0;
|
|
if (absw > GCTL_MAG_TETRA_TOL)
|
|
{
|
|
beta = std::atan((mij0*Sij_plus)/(Rij0*Rij0+absw*Rij_plus))
|
|
- std::atan((mij0*Sij_minus)/(Rij0*Rij0+absw*Rij_minus));
|
|
part2 = absw*beta;
|
|
}
|
|
|
|
part1 = 0.0;
|
|
if (std::abs(mij0) > GCTL_MAG_TETRA_TOL)
|
|
{
|
|
part1 = mij0*std::log((Rij_plus+Sij_plus)/(Rij_minus+Sij_minus));
|
|
}
|
|
|
|
k0 += (part1 - part2);
|
|
}
|
|
|
|
// nT -> T 1e-9 / 4*pi*e-7 = 1/(400*pi)*100 = 1/(4*pi) -> A/m
|
|
out_pot += 1.0/(4.0*GCTL_Pi)*k0*mpara->mag_amp[f];
|
|
}
|
|
|
|
return out_pot;
|
|
}
|
|
|
|
gctl::point3dc magkernel_tetrahedron_gradient_sig(const gctl::magtet_ren17 &tet, const gctl::point3dc &site)
|
|
{
|
|
double Rij_minus, Rij_plus, Sij_plus, Sij_minus, Rij0, mij0, wi0;
|
|
double beta, Aij, sig, absw;
|
|
gctl::point3dc oi, k1, part1, part2;
|
|
|
|
// get attribute pointer
|
|
if (tet.att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_tetrahedron_gradient_sig(...)");
|
|
gctl::magtet_para_ren17 *mpara = tet.att;
|
|
|
|
gctl::point3dc out_grad(0.0, 0.0, 0.0);
|
|
for (int f = 0; f < 4; ++f)
|
|
{
|
|
k1.set(0.0, 0.0, 0.0);
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
Rij_minus = (site - *tet.fget(f, j)).module();
|
|
Rij_plus = (site - *tet.fget(f, (j+1)%3)).module();
|
|
|
|
if (j == 0)
|
|
{
|
|
wi0 = gctl::dot(site - *tet.fget(f, j), mpara->nf[f]);
|
|
sig = gctl::sign(wi0);
|
|
absw = std::abs(wi0);
|
|
}
|
|
|
|
oi = site - wi0*mpara->nf[f];
|
|
Sij_minus = gctl::dot(*tet.fget(f, j) - oi, mpara->te[3*f+j]);
|
|
Sij_plus = gctl::dot(*tet.fget(f, (j+1)%3) - oi, mpara->te[3*f+j]);
|
|
mij0 = gctl::dot(*tet.fget(f, j) - oi, mpara->ne[3*f+j]);
|
|
Rij0 = std::sqrt(wi0*wi0 + mij0*mij0);
|
|
|
|
part2.set(0.0, 0.0, 0.0);
|
|
if (absw > GCTL_MAG_TETRA_TOL)
|
|
{
|
|
beta = atan((mij0*Sij_plus)/(Rij0*Rij0 + absw*Rij_plus))
|
|
- atan((mij0*Sij_minus)/(Rij0*Rij0 + absw*Rij_minus));
|
|
|
|
part2 = sig*beta*mpara->nf[f];
|
|
}
|
|
|
|
if (std::abs(Rij0) > GCTL_MAG_TETRA_TOL)
|
|
{
|
|
Aij = std::log((long double)(Rij_plus+Sij_plus)) - std::log((long double)(Rij_minus+Sij_minus));
|
|
}
|
|
else if (Sij_plus > 0.0 && Sij_minus > 0.0)
|
|
{
|
|
Aij = std::log(Sij_plus) - std::log(Sij_minus);
|
|
}
|
|
else if (Sij_plus < 0.0 && Sij_minus < 0.0)
|
|
{
|
|
Aij = std::log(-1.0*Sij_minus) - std::log(-1.0*Sij_plus);
|
|
}
|
|
else
|
|
{
|
|
throw gctl::runtime_error("Observation site on edge. From magtet::mag_gradient()");
|
|
}
|
|
|
|
part1 = Aij * mpara->ne[3*f+j];
|
|
k1 = k1 - (part1 + part2);
|
|
}
|
|
|
|
// nT -> T 1e-9 / 4*pi*e-7 = 1/(400*pi)*100 = 1/(4*pi) -> A/m
|
|
out_grad = out_grad - 1.0/(4.0*GCTL_Pi)*k1*mpara->mag_amp[f];
|
|
}
|
|
return out_grad;
|
|
}
|
|
|
|
gctl::tensor magkernel_tetrahedron_tensor_sig(const gctl::magtet_ren17 &tet, const gctl::point3dc &site)
|
|
{
|
|
double Rij_minus, Rij_plus, Sij_plus, Sij_minus, Rij0, mij0, wi0;
|
|
double beta, sig, absw;
|
|
double factor_n_mij, factor_tij;
|
|
gctl::point3dc oi, grad_Aij;
|
|
gctl::point3dc grad_Rij_plus, grad_Rij_minus, grad_Sij_plus, grad_Sij_minus;
|
|
gctl::point3dc grad_mij0, grad_Rij0, grad_abs_wi0;
|
|
gctl::point3dc grad_a_plus, grad_b_plus, grad_a_minus, grad_b_minus;
|
|
gctl::point3dc grad_betaij_plus, grad_betaij_minus, grad_betaij;
|
|
double a_plus, b_plus, a_minus, b_minus;
|
|
double k3;
|
|
gctl::tensor tmp_k, k2;
|
|
|
|
// get attribute pointer
|
|
if (tet.att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_tetrahedron_tensor_sig(...)");
|
|
gctl::magtet_para_ren17 *mpara = tet.att;
|
|
|
|
gctl::tensor out_tensor(0.0);
|
|
for (int f = 0; f < 4; ++f)
|
|
{
|
|
k2.set(0.0);
|
|
k3 = 0.0;
|
|
for (int j = 0; j < 3; ++j)
|
|
{
|
|
Rij_minus = (site - *tet.fget(f, j)).module();
|
|
Rij_plus = (site - *tet.fget(f, (j+1)%3)).module();
|
|
|
|
if (j == 0)
|
|
{
|
|
wi0 = gctl::dot(site - *tet.fget(f, j), mpara->nf[f]);
|
|
sig = gctl::sign(wi0);
|
|
absw = std::abs(wi0);
|
|
}
|
|
|
|
oi = site - wi0*mpara->nf[f];
|
|
Sij_minus = gctl::dot(*tet.fget(f, j) - oi, mpara->te[3*f+j]);
|
|
Sij_plus = gctl::dot(*tet.fget(f, (j+1)%3) - oi, mpara->te[3*f+j]);
|
|
mij0 = gctl::dot(*tet.fget(f, j) - oi, mpara->ne[3*f+j]);
|
|
Rij0 = std::sqrt(wi0*wi0 + mij0*mij0);
|
|
|
|
if (std::abs(Rij0) > GCTL_MAG_TETRA_TOL)
|
|
{
|
|
factor_n_mij = -1.0*(Sij_plus/(Rij0*Rij0*Rij_plus) - Sij_minus/(Rij0*Rij0*Rij_minus));
|
|
factor_tij = -1.0/Rij_plus + 1.0/Rij_minus;
|
|
grad_Aij = (wi0*factor_n_mij)*mpara->nf[f] + factor_tij*mpara->te[3*f+j]
|
|
- (mij0*factor_n_mij)*mpara->ne[3*f+j];
|
|
}
|
|
else
|
|
{
|
|
factor_tij = -1.0/Rij_plus + 1.0/Rij_minus;
|
|
grad_Aij = factor_tij*mpara->te[3*f+j];
|
|
}
|
|
|
|
//tmp_k = gctl::kron(grad_Aij, ne_[e][3*f+j]);
|
|
tmp_k = gctl::kron(mpara->ne[3*f+j], grad_Aij);
|
|
k2 = k2 - tmp_k;
|
|
|
|
if (absw > GCTL_MAG_TETRA_TOL)
|
|
{
|
|
grad_Rij_plus = (1.0/Rij_plus)*(site - *tet.fget(f, (j+1)%3));
|
|
grad_Rij_minus = (1.0/Rij_minus)*(site - *tet.fget(f, j));
|
|
grad_Sij_plus = -1.0*mpara->te[3*f+j];
|
|
grad_Sij_minus = -1.0*mpara->te[3*f+j];
|
|
grad_mij0 = -1.0*mpara->ne[3*f+j];
|
|
grad_Rij0 = (1.0/Rij0)*(wi0*mpara->nf[f] - mij0*mpara->ne[3*f+j]);
|
|
grad_abs_wi0 = sig*mpara->nf[f];
|
|
a_plus = Rij0*Rij0 + absw*Rij_plus;
|
|
b_plus = mij0*Sij_plus;
|
|
grad_a_plus = (2.0*Rij0)*grad_Rij0 + Rij_plus*grad_abs_wi0 + absw*grad_Rij_plus;
|
|
grad_b_plus = Sij_plus*grad_mij0 + mij0*grad_Sij_plus;
|
|
a_minus = Rij0*Rij0 + absw*Rij_minus;
|
|
b_minus = mij0*Sij_minus;
|
|
grad_a_minus = (2.0*Rij0)*grad_Rij0 + Rij_minus*grad_abs_wi0 + absw*grad_Rij_minus;
|
|
grad_b_minus = Sij_minus*grad_mij0 + mij0*grad_Sij_minus;
|
|
grad_betaij_plus = (1.0/(a_plus*a_plus + b_plus*b_plus))*(a_plus*grad_b_plus - b_plus*grad_a_plus);
|
|
grad_betaij_minus = (1.0/(a_minus*a_minus + b_minus*b_minus))*(a_minus*grad_b_minus - b_minus*grad_a_minus);
|
|
|
|
grad_betaij = grad_betaij_plus - grad_betaij_minus;
|
|
|
|
tmp_k = gctl::kron(grad_betaij, mpara->nf[f]);
|
|
k2 = k2 - sig*tmp_k;
|
|
}
|
|
else
|
|
{
|
|
if (std::abs(mij0) > GCTL_MAG_TETRA_TOL)
|
|
{
|
|
k3 += (-1.0/mij0)*(Sij_plus/Rij_plus - Sij_minus/Rij_minus);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (k3 != 0.0)
|
|
{
|
|
tmp_k = gctl::kron(mpara->nf[f], mpara->nf[f]);
|
|
k2 = k2 - k3*tmp_k;
|
|
}
|
|
|
|
// nT -> T 1e-9 / 4*pi*e-7 = 1/(400*pi)*100 = 1/(4*pi) -> A/m
|
|
out_tensor = out_tensor - 1.0/(4.0*GCTL_Pi)*k2*mpara->mag_amp[f];
|
|
}
|
|
|
|
return out_tensor;
|
|
}
|