gctl_potential/lib/potential/gkernel_tricone_model_gradient.cpp
2025-01-08 11:26:13 +08:00

1704 lines
61 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "gkernel_tricone.h"
#include "cmath"
using namespace gctl::geometry3d;
/*
void gctl::grav_tri_cone_gji::initialize_tensors()
{
point3dc v1, v2, v3, nf, ne;
point3dc faceVec, faceVec_rj;
point3dc edgeVec_j2, edgeVec_j2_rj;
point3dc edgeVec_23, edgeVec_23_rj;
point3dc edgeVec_3j, edgeVec_3j_rj;
point3dc edgeVec_2j, edgeVec_2j_rj;
point3dc edgeVec_j3, edgeVec_j3_rj;
point3dc rjNor;
if (vert[0] == nullptr || vert[1] == nullptr ||
vert[2] == nullptr || vert[3] == nullptr)
{
std::string err_str = "Null pointer found. From void gctl::grav_triangle::initialize_tensors()";
throw runtime_error(err_str);
}
for (int i = 0; i < 4; i++)
{
v1 = *vert[cone_order[1+i*3]] - *vert[cone_order[i*3]];
v2 = *vert[cone_order[2+i*3]] - *vert[cone_order[i*3]];
nf = cross(v1, v2).normal();
nface[i] = nf;
F[i] = kron(nf, nf);
for (int j = 0; j < 3; j++)
{
edglen[j+i*3] = distance(*vert[cone_order[j+i*3]], *vert[cone_order[(j+1)%3+i*3]]);
v3 = *vert[cone_order[(j+1)%3+i*3]] - *vert[cone_order[j+i*3]];
ne = cross(v3, nf).normal();
nedge[j+i*3] = ne;
E[j+i*3] = kron(nf, ne);
}
}
for (int e = 0; e < 3; e++)
{
// 半径的单位矢量
rjNor = (*vert[e] - *vert[3]).normal();
//计算顶面的情况
faceVec = cross(*vert[(e+1)%3] - *vert[e], *vert[(e+2)%3] - *vert[e]);
faceVec_rj = cross(rjNor, *vert[(e+1)%3] - *vert[(e+2)%3]);
nf_rj[e] = nr_dr(faceVec, faceVec_rj);
edgeVec_j2 = cross(*vert[(e+1)%3] - *vert[e], faceVec);
edgeVec_j2_rj = cross(*vert[(e+1)%3] - *vert[e], faceVec_rj) - cross(rjNor, faceVec);
nj2_rj[e] = nr_dr(edgeVec_j2, edgeVec_j2_rj);
edgeVec_23 = cross(*vert[(e+2)%3] - *vert[(e+1)%3], faceVec);
edgeVec_23_rj = cross(*vert[(e+2)%3] - *vert[(e+1)%3], faceVec_rj);
n23_rj[e] = nr_dr(edgeVec_23, edgeVec_23_rj);
edgeVec_3j = cross(*vert[e] - *vert[(e+2)%3], faceVec);
edgeVec_3j_rj = cross(*vert[e] - *vert[(e+2)%3], faceVec_rj) + cross(rjNor, faceVec);
n3j_rj[e] = nr_dr(edgeVec_3j, edgeVec_3j_rj);
//计算右侧面的情况
faceVec = cross(*vert[(e+1)%3], *vert[e]);
faceVec_rj = cross(*vert[(e+1)%3], rjNor);
edgeVec_2j = cross(*vert[e] - *vert[(e+1)%3], faceVec);
edgeVec_2j_rj = cross(rjNor, faceVec);
n2j_rj[e] = nr_dr(edgeVec_2j, edgeVec_2j_rj);
//计算左侧面的情况
faceVec = cross(*vert[e], *vert[(e+2)%3]);
faceVec_rj = cross(rjNor, *vert[(e+2)%3]);
edgeVec_j3 = cross(*vert[(e+2)%3] - *vert[e], faceVec);
edgeVec_j3_rj = cross(faceVec, rjNor);
nj3_rj[e] = nr_dr(edgeVec_j3, edgeVec_j3_rj);
}
return;
}
*/
void gctl::callink_gravity_para(array<grav_tri_cone_gji> &in_cone, array<gravcone_para_gji> &out_para)
{
point3dc v1, v2, v3, ne, nf;
point3dc faceVec, faceVec_rj;
point3dc edgeVec_j2, edgeVec_j2_rj;
point3dc edgeVec_23, edgeVec_23_rj;
point3dc edgeVec_3j, edgeVec_3j_rj;
point3dc edgeVec_2j, edgeVec_2j_rj;
point3dc edgeVec_j3, edgeVec_j3_rj;
point3dc rjNor;
out_para.resize(in_cone.size());
for (int i = 0; i < in_cone.size(); ++i)
{
if (in_cone[i].vert[0] == nullptr || in_cone[i].vert[1] == nullptr ||
in_cone[i].vert[2] == nullptr || in_cone[i].vert[3] == nullptr)
{
throw runtime_error("Invalid vertex pointer. From callink_gravity_para(...)");
}
for (int f = 0; f < 4; ++f)
{
v1 = *in_cone[i].fget(f, 1) - *in_cone[i].fget(f, 0);
v2 = *in_cone[i].fget(f, 2) - *in_cone[i].fget(f, 0);
nf = cross(v1, v2).normal();
out_para[i].nface[f] = nf;
out_para[i].F[f] = kron(nf, nf);
for (int e = 0; e < 3; ++e)
{
v3 = *in_cone[i].fget(f, (e+1)%3) - *in_cone[i].fget(f, e);
out_para[i].edglen[e+f*3] = v3.module();
ne = cross(v3, nf).normal();
out_para[i].nedge[e+f*3] = ne;
out_para[i].E[e+f*3] = kron(nf, ne);
}
for (int e = 0; e < 3; ++e)
{
// 半径的单位矢量
rjNor = (*in_cone[i].vert[e] - *in_cone[i].vert[3]).normal();
//计算顶面的情况
faceVec = cross(*in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[e],
*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[e]);
faceVec_rj = cross(rjNor, *in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[(e+2)%3]);
out_para[i].nf_rj[e] = nr_dr(faceVec, faceVec_rj);
edgeVec_j2 = cross(*in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[e], faceVec);
edgeVec_j2_rj = cross(*in_cone[i].vert[(e+1)%3] - *in_cone[i].vert[e], faceVec_rj)
- cross(rjNor, faceVec);
out_para[i].nj2_rj[e] = nr_dr(edgeVec_j2, edgeVec_j2_rj);
edgeVec_23 = cross(*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[(e+1)%3], faceVec);
edgeVec_23_rj = cross(*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[(e+1)%3], faceVec_rj);
out_para[i].n23_rj[e] = nr_dr(edgeVec_23, edgeVec_23_rj);
edgeVec_3j = cross(*in_cone[i].vert[e] - *in_cone[i].vert[(e+2)%3], faceVec);
edgeVec_3j_rj = cross(*in_cone[i].vert[e] - *in_cone[i].vert[(e+2)%3], faceVec_rj)
+ cross(rjNor, faceVec);
out_para[i].n3j_rj[e] = nr_dr(edgeVec_3j, edgeVec_3j_rj);
//计算右侧面的情况
faceVec = cross(*in_cone[i].vert[(e+1)%3], *in_cone[i].vert[e]);
faceVec_rj = cross(*in_cone[i].vert[(e+1)%3], rjNor);
edgeVec_2j = cross(*in_cone[i].vert[e] - *in_cone[i].vert[(e+1)%3], faceVec);
edgeVec_2j_rj = cross(rjNor, faceVec);
out_para[i].n2j_rj[e] = nr_dr(edgeVec_2j, edgeVec_2j_rj);
//计算左侧面的情况
faceVec = cross(*in_cone[i].vert[e], *in_cone[i].vert[(e+2)%3]);
faceVec_rj = cross(rjNor, *in_cone[i].vert[(e+2)%3]);
edgeVec_j3 = cross(*in_cone[i].vert[(e+2)%3] - *in_cone[i].vert[e], faceVec);
edgeVec_j3_rj = cross(faceVec, rjNor);
out_para[i].nj3_rj[e] = nr_dr(edgeVec_j3, edgeVec_j3_rj);
}
}
in_cone[i].att = out_para.get(i);
}
return;
}
typedef void (*gobser_mGrad_tricone)(gctl::array<double> &out_mGrad,
const gctl::array<std::vector<gctl::grav_tri_cone_gji*> > &vert_neighList,
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
double ang_limit, gctl::verbose_type_e verbose);
void gobser_mGrad_tricone_vr(gctl::array<double> &out_mGrad,
const gctl::array<std::vector<gctl::grav_tri_cone_gji*> > &vert_neighList,
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
double ang_limit, gctl::verbose_type_e verbose);
void gobser_mGrad_tricone_vrp(gctl::array<double> &out_mGrad,
const gctl::array<std::vector<gctl::grav_tri_cone_gji*> > &vert_neighList,
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
double ang_limit, gctl::verbose_type_e verbose);
void gobser_mGrad_tricone_vrt(gctl::array<double> &out_mGrad,
const gctl::array<std::vector<gctl::grav_tri_cone_gji*> > &vert_neighList,
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
double ang_limit, gctl::verbose_type_e verbose);
void gobser_mGrad_tricone_vrr(gctl::array<double> &out_mGrad,
const gctl::array<std::vector<gctl::grav_tri_cone_gji*> > &vert_neighList,
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
double ang_limit, gctl::verbose_type_e verbose);
void gctl::gobser_model_gradient(array<double> &out_mGrad,
const array<std::vector<grav_tri_cone_gji*> > &vert_neighList,
const array<double> &obs_diff, const array<point3ds> &ops,
const array<double> &rho, const array<vertex3dc> *verts_ptr,
double ang_limit, gravitational_field_type_e comp_id, verbose_type_e verbose)
{
gobser_mGrad_tricone gobser_mGrad;
switch (comp_id)
{
case Vz:
gobser_mGrad = gobser_mGrad_tricone_vr;
break;
case Tzx:
gobser_mGrad = gobser_mGrad_tricone_vrp;
break;
case Tzy:
gobser_mGrad = gobser_mGrad_tricone_vrt;
break;
case Tzz:
gobser_mGrad = gobser_mGrad_tricone_vrr;
break;
default:
gobser_mGrad = gobser_mGrad_tricone_vr;
break;
}
return gobser_mGrad(out_mGrad, vert_neighList, obs_diff, ops, rho, verts_ptr, ang_limit, verbose);
}
double gobser_mGrad_tricone_vr_sig(const std::vector<gctl::grav_tri_cone_gji*> &a_list,
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho);
double gobser_mGrad_tricone_vrp_sig(const std::vector<gctl::grav_tri_cone_gji*> &a_list,
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho);
double gobser_mGrad_tricone_vrt_sig(const std::vector<gctl::grav_tri_cone_gji*> &a_list,
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho);
double gobser_mGrad_tricone_vrr_sig(const std::vector<gctl::grav_tri_cone_gji*> &a_list,
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho);
typedef void (*gobser_tri_cone_gji)(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tricone_gji_pot(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tricone_gji_vr(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tricone_gji_vrp(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tricone_gji_vrt(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gobser_tricone_gji_vrr(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose);
void gctl::gobser(array<double> &out_obs, const array<grav_tri_cone_gji> &ele, const array<point3ds> &ops,
const array<double> &rho, gravitational_field_type_e comp_id, verbose_type_e verbose)
{
gobser_tri_cone_gji tricone_obser;
switch (comp_id)
{
case GravPot:
tricone_obser = gobser_tricone_gji_pot;
case Vz:
tricone_obser = gobser_tricone_gji_vr;
break;
case Tzx:
tricone_obser = gobser_tricone_gji_vrp;
break;
case Tzy:
tricone_obser = gobser_tricone_gji_vrt;
break;
case Tzz:
tricone_obser = gobser_tricone_gji_vrr;
break;
default:
tricone_obser = gobser_tricone_gji_vr;
break;
}
return tricone_obser(out_obs, ele, ops, rho, verbose);
}
double gkernel_tricone_gji_pot_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op);
double gkernel_tricone_gji_vr_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op);
double gkernel_tricone_gji_vrp_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op);
double gkernel_tricone_gji_vrt_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op);
double gkernel_tricone_gji_vrr_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op);
// 以下是具体的实现
void gobser_mGrad_tricone_vr(gctl::array<double> &out_mGrad,
const gctl::array<std::vector<gctl::grav_tri_cone_gji*> > &vert_neighList,
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
double ang_limit, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int v_size = vert_neighList.size();
out_mGrad.resize(v_size, 0.0);
gctl::progress_bar bar(o_size, "gobser_mGrad_vr");
if (verts_ptr != nullptr && ang_limit > 0.0)
{
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed(i);
#pragma omp parallel for private (j) shared(i) schedule(guided)
for (j = 0; j < v_size; j++)
{
if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0)
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vr_sig(vert_neighList[j], j, ops[i], rho);
}
}
}
else
{
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed(i);
#pragma omp parallel for private (j) shared(i) schedule(guided)
for (j = 0; j < v_size; j++)
{
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vr_sig(vert_neighList[j], j, ops[i], rho);
}
}
}
return;
}
void gobser_mGrad_tricone_vrp(gctl::array<double> &out_mGrad,
const gctl::array<std::vector<gctl::grav_tri_cone_gji*> > &vert_neighList,
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
double ang_limit, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int v_size = vert_neighList.size();
out_mGrad.resize(v_size, 0.0);
gctl::progress_bar bar(o_size, "gobser_mGrad_vrp");
if (verts_ptr != nullptr && ang_limit > 0.0)
{
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed(i);
#pragma omp parallel for private (j) shared(i) schedule(guided)
for (j = 0; j < v_size; j++)
{
if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0)
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrp_sig(vert_neighList[j], j, ops[i], rho);
}
}
}
else
{
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed(i);
#pragma omp parallel for private (j) shared(i) schedule(guided)
for (j = 0; j < v_size; j++)
{
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrp_sig(vert_neighList[j], j, ops[i], rho);
}
}
}
return;
}
void gobser_mGrad_tricone_vrt(gctl::array<double> &out_mGrad,
const gctl::array<std::vector<gctl::grav_tri_cone_gji*> > &vert_neighList,
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
double ang_limit, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int v_size = vert_neighList.size();
out_mGrad.resize(v_size, 0.0);
gctl::progress_bar bar(o_size, "gobser_mGrad_vrt");
if (verts_ptr != nullptr && ang_limit > 0.0)
{
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed(i);
#pragma omp parallel for private (j) shared(i) schedule(guided)
for (j = 0; j < v_size; j++)
{
if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0)
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrt_sig(vert_neighList[j], j, ops[i], rho);
}
}
}
else
{
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed(i);
#pragma omp parallel for private (j) shared(i) schedule(guided)
for (j = 0; j < v_size; j++)
{
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrt_sig(vert_neighList[j], j, ops[i], rho);
}
}
}
return;
}
void gobser_mGrad_tricone_vrr(gctl::array<double> &out_mGrad,
const gctl::array<std::vector<gctl::grav_tri_cone_gji*> > &vert_neighList,
const gctl::array<double> &obs_diff, const gctl::array<gctl::point3ds> &ops,
const gctl::array<double> &rho, const gctl::array<gctl::vertex3dc> *verts_ptr,
double ang_limit, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int v_size = vert_neighList.size();
out_mGrad.resize(v_size, 0.0);
gctl::progress_bar bar(o_size, "gobser_mGrad_vrr");
if (verts_ptr != nullptr && ang_limit > 0.0)
{
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed(i);
#pragma omp parallel for private (j) shared(i) schedule(guided)
for (j = 0; j < v_size; j++)
{
if (angle(ops[i].s2c(), verts_ptr->at(j)) <= ang_limit*GCTL_Pi/180.0)
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrr_sig(vert_neighList[j], j, ops[i], rho);
}
}
}
else
{
for (i = 0; i < o_size; i++)
{
if (verbose == gctl::FullMsg) bar.progressed(i);
else if (verbose == gctl::ShortMsg) bar.progressed(i);
#pragma omp parallel for private (j) shared(i) schedule(guided)
for (j = 0; j < v_size; j++)
{
out_mGrad.at(j) += obs_diff[i] * gobser_mGrad_tricone_vrr_sig(vert_neighList[j], j, ops[i], rho);
}
}
}
return;
}
void gobser_tricone_gji_pot(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
gctl::progress_bar bar(e_size, "gobser_pot");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) shared(j) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs.at(i) += gkernel_tricone_gji_pot_sig(ele[j], ops[i]) * rho[j];
}
}
return;
}
void gobser_tricone_gji_vr(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
gctl::progress_bar bar(e_size, "gobser_vr");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) shared(j) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs.at(i) += gkernel_tricone_gji_vr_sig(ele[j], ops[i]) * rho[j];
}
}
return;
}
void gobser_tricone_gji_vrp(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
gctl::progress_bar bar(e_size, "gobser_vrp");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) shared(j) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs.at(i) += gkernel_tricone_gji_vrp_sig(ele[j], ops[i]) * rho[j];
}
}
return;
}
void gobser_tricone_gji_vrt(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
gctl::progress_bar bar(e_size, "gobser_vrt");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) shared(j) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs.at(i) += gkernel_tricone_gji_vrt_sig(ele[j], ops[i]) * rho[j];
}
}
return;
}
void gobser_tricone_gji_vrr(gctl::array<double> &out_obs, const gctl::array<gctl::grav_tri_cone_gji> &ele,
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &rho, gctl::verbose_type_e verbose)
{
int i, j;
int o_size = ops.size();
int e_size = ele.size();
out_obs.resize(o_size, 0.0);
gctl::progress_bar bar(e_size, "gobser_vrr");
for (j = 0; j < e_size; j++)
{
if (verbose == gctl::FullMsg) bar.progressed(j);
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
#pragma omp parallel for private (i) shared(j) schedule(guided)
for (i = 0; i < o_size; i++)
{
out_obs.at(i) += gkernel_tricone_gji_vrr_sig(ele[j], ops[i]) * rho[j];
}
}
return;
}
double gobser_mGrad_tricone_vr_sig(const std::vector<gctl::grav_tri_cone_gji*> &a_list,
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho)
{
int local_id;
double beta, beta_rj, alpha, alpha_rj;
double a_rj, e_rj, Le_rj, Le;
double wf, wf_rj;
double L_j23;
double L_ijk[3];
gctl::point3dc op_c;
gctl::point3dc r_j23[3];
gctl::point3dc r_j23_side[3];
gctl::point3dc r_ijk[3];
gctl::point3dc R;
gctl::point3dc face_temp, edge_temp;
gctl::point3dc re;
gctl::grav_tri_cone_gji* curr_tri;
gctl::gravcone_para_gji* gp;
R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
op_c = a_op.s2c();
double point_sum = 0.0;
for (int j = 0; j < a_list.size(); j++)
{
curr_tri = a_list.at(j);
gp = curr_tri->att;
// 找到顶点在某个三棱锥中的局部排序
for (int t = 0; t < 3; t++)
{
if (vert_id == curr_tri->vert[t]->id)
{
local_id = t;
break;
}
}
//先处理顶面
r_j23[0] = *curr_tri->vert[local_id];
r_j23[1] = *curr_tri->vert[(local_id+1)%3];
r_j23[2] = *curr_tri->vert[(local_id+2)%3];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0]
r_ijk[1] = r_j23[1] - op_c;
r_ijk[2] = r_j23[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0], cross(r_ijk[1], r_ijk[2]));
beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1], r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2], r_ijk[0]) + L_ijk[2]*dot(r_ijk[0], r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1], r_ijk[2]))*dot(r_j23[0], r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1], r_j23[0])/L_j23;
wf = 2*atan2(beta, alpha);
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//计算面与边的乘积
face_temp = (wf*dot(gp->nface[0], r_ijk[0])*gp->nf_rj[local_id] +
wf*dot(gp->nf_rj[local_id], r_ijk[0])*gp->nface[0] +
wf*dot(gp->nface[0], r_j23[0].normal())*gp->nface[0] +
wf_rj*dot(gp->nface[0], r_ijk[0])*gp->nface[0]);
//观测点到右侧边
re = r_j23[0] - op_c;
//计算a_rj,e_rj
a_rj = dot(r_j23[0], r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23[0], r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23);
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/
(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]));
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]);
edge_temp =
(Le*dot(gp->nedge[local_id], re)*gp->nf_rj[local_id] +
Le*dot(gp->nj2_rj[local_id], re)*gp->nface[0] +
Le*dot(gp->nedge[local_id], r_j23[0].normal())*gp->nface[0] +
Le_rj*dot(gp->nedge[local_id], re)*gp->nface[0] +
Le*dot(gp->n2j_rj[local_id], re)*gp->nface[local_id+1] +
Le*dot(gp->nedge[local_id*3+5], r_j23[0].normal())*gp->nface[local_id+1] +
Le_rj*dot(gp->nedge[local_id*3+5], re)*gp->nface[local_id+1]);
//观测点到左侧边
//计算a_rj,e_rj
a_rj = dot(r_j23[0], r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23[0], r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23);
Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/
(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]));
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]);
edge_temp = edge_temp +
(Le*dot(gp->nedge[(local_id+2)%3], re)*gp->nf_rj[local_id] +
Le*dot(gp->n3j_rj[local_id], re)*gp->nface[0] +
Le*dot(gp->nedge[(local_id+2)%3], r_j23[0].normal())*gp->nface[0] +
Le_rj*dot(gp->nedge[(local_id+2)%3], re)*gp->nface[0] +
Le*dot(gp->nj3_rj[local_id], re)*gp->nface[(local_id+2)%3+1] +
Le*dot(gp->nedge[((local_id+2)%3)*3+5], r_j23[0].normal())*gp->nface[(local_id+2)%3+1] +
Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5], re)*gp->nface[(local_id+2)%3+1]);
//观测点到后侧
re = 0.5*(r_j23[1] + r_j23[2]) - op_c;
Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/
(L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3]));
edge_temp = edge_temp +
(Le*dot(gp->nedge[(local_id+1)%3], re)*gp->nf_rj[local_id] +
Le*dot(gp->n23_rj[local_id], re)*gp->nface[0]);
//转换r_j23为顶点右边侧面的情况*******************************************
r_j23_side[0] = r_j23[0];
r_j23_side[1] = *curr_tri->vert[3];
r_j23_side[2] = r_j23[1];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
r_ijk[1] = r_j23_side[1] - op_c;
r_ijk[2] = r_j23_side[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23_side[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0], cross(r_ijk[1], r_ijk[2]));
beta_rj = dot(r_j23_side[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1], r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2], r_ijk[0]) + L_ijk[2]*dot(r_ijk[0], r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1], r_ijk[2]))*dot(r_j23_side[0], r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
wf = 2*atan2(beta, alpha);
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//累加face_temp
face_temp = face_temp +
(wf*dot(gp->nface[local_id+1], r_j23_side[0])*gp->nface[local_id+1] +
wf_rj*dot(gp->nface[local_id+1], r_ijk[0])*gp->nface[local_id+1]);
//侧棱
re = r_j23_side[0] - op_c;
//计算a_rj,e_rj
a_rj = dot(r_j23_side[0], r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23_side[0], r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23);;
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3])/
(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]));
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3])
- (a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]);
edge_temp = edge_temp +
(Le*dot(gp->nedge[(local_id+1)*3], r_j23_side[0])*gp->nface[local_id+1] +
Le_rj*dot(gp->nedge[(local_id+1)*3], re)*gp->nface[local_id+1] +
Le*dot(gp->nedge[3*((local_id+2)%3+1)+1], r_j23_side[0])*gp->nface[(local_id+2)%3+1] +
Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1], re)*gp->nface[(local_id+2)%3+1]);
//转换r_j23为顶点左边侧面的情况*******************************************
r_j23_side[0] = r_j23[0];
r_j23_side[1] = r_j23[2];
r_j23_side[2] = *curr_tri->vert[3];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
r_ijk[1] = r_j23_side[1] - op_c;
r_ijk[2] = r_j23_side[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23_side[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23_side[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
wf = 2*atan2(beta, alpha);
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//累加face_temp
face_temp = face_temp +
(wf*dot(gp->nface[(local_id+2)%3+1], r_j23_side[0])*gp->nface[(local_id+2)%3+1] +
wf_rj*dot(gp->nface[(local_id+2)%3+1], r_ijk[0])*gp->nface[(local_id+2)%3+1]);
point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(edge_temp, R) - dot(face_temp, R));
}
return point_sum;
}
double gobser_mGrad_tricone_vrp_sig(const std::vector<gctl::grav_tri_cone_gji*> &a_list,
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho)
{
int local_id;
double beta, beta_rj, alpha, alpha_rj;
double a_rj, e_rj, Le_rj, Le;
double wf, wf_rj;
double L_j23;
double L_ijk[3];
gctl::point3dc op_c;
gctl::point3dc r_j23[3];
gctl::point3dc r_j23_side[3];
gctl::point3dc r_ijk[3];
gctl::point3dc R, R_1st;
gctl::point3dc face_temp, edge_temp;
gctl::grav_tri_cone_gji* curr_tri;
gctl::gravcone_para_gji* gp;
R_1st.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R_1st.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R_1st.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
R.x = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R.y = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R.z = 0.0;
op_c = a_op.s2c();
double point_sum = 0.0;
for (int j = 0; j < a_list.size(); j++)
{
curr_tri = a_list.at(j);
gp = curr_tri->att;
// 找到顶点在某个三棱锥中的局部排序
for (int t = 0; t < 3; t++)
{
if (vert_id == curr_tri->vert[t]->id)
{
local_id = t;
break;
}
}
//先处理顶面
r_j23[0] = *curr_tri->vert[local_id];
r_j23[1] = *curr_tri->vert[(local_id+1)%3];
r_j23[2] = *curr_tri->vert[(local_id+2)%3];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0]
r_ijk[1] = r_j23[1] - op_c;
r_ijk[2] = r_j23[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23[0])/L_j23;
wf = 2*atan2(beta, alpha);
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//计算面与边的乘积
face_temp = (wf*dot(gp->nface[0], R_1st)*gp->nf_rj[local_id] +
wf*dot(gp->nf_rj[local_id], R_1st)*gp->nface[0] +
wf_rj*dot(gp->nface[0], R_1st)*gp->nface[0]);
//观测点到右侧边
//计算a_rj,e_rj
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23[0],r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23);
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/
(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]));
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]);
edge_temp =
(Le*dot(gp->nedge[local_id],R_1st)*gp->nf_rj[local_id] +
Le*dot(gp->nj2_rj[local_id],R_1st)*gp->nface[0] +
Le_rj*dot(gp->nedge[local_id],R_1st)*gp->nface[0] +
Le*dot(gp->n2j_rj[local_id],R_1st)*gp->nface[local_id+1] +
Le_rj*dot(gp->nedge[local_id*3+5],R_1st)*gp->nface[local_id+1]);
//观测点到左侧边
//计算a_rj,e_rj
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23[0],r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23);
Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/
(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]));
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]);
edge_temp = edge_temp +
(Le*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nf_rj[local_id] +
Le*dot(gp->n3j_rj[local_id],R_1st)*gp->nface[0] +
Le_rj*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nface[0] +
Le*dot(gp->nj3_rj[local_id],R_1st)*gp->nface[(local_id+2)%3+1] +
Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5],R_1st)*gp->nface[(local_id+2)%3+1]);
//观测点到背侧
Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/
(L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3]));
edge_temp = edge_temp +
(Le*dot(gp->nedge[(local_id+1)%3],R_1st)*gp->nf_rj[local_id] +
Le*dot(gp->n23_rj[local_id],R_1st)*gp->nface[0]);
//转换r_j23为顶点右边侧面的情况*******************************************
r_j23_side[0] = r_j23[0];
r_j23_side[1] = *curr_tri->vert[3];
r_j23_side[2] = r_j23[1];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
r_ijk[1] = r_j23_side[1] - op_c;
r_ijk[2] = r_j23_side[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23_side[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//累加face_temp
face_temp = face_temp +
wf_rj*dot(gp->nface[local_id+1],R_1st)*gp->nface[local_id+1];
//侧棱
//计算a_rj,e_rj
a_rj = dot(r_j23_side[0],r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23_side[0],r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23);
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]);
edge_temp = edge_temp +
(Le_rj*dot(gp->nedge[(local_id+1)*3],R_1st)*gp->nface[local_id+1] +
Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1],R_1st)*gp->nface[(local_id+2)%3+1]);
//转换r_j23为顶点左边侧面的情况*******************************************
r_j23_side[0] = r_j23[0];
r_j23_side[1] = r_j23[2];
r_j23_side[2] = *curr_tri->vert[3];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
r_ijk[1] = r_j23_side[1] - op_c;
r_ijk[2] = r_j23_side[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23_side[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//累加face_temp
face_temp = face_temp +
wf_rj*dot(gp->nface[(local_id+2)%3+1],R_1st)*gp->nface[(local_id+2)%3+1];
point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(face_temp, R) - dot(edge_temp, R));
}
return point_sum;
}
double gobser_mGrad_tricone_vrt_sig(const std::vector<gctl::grav_tri_cone_gji*> &a_list,
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho)
{
int local_id;
double beta, beta_rj, alpha, alpha_rj;
double a_rj, e_rj, Le_rj, Le;
double wf, wf_rj;
double L_j23;
double L_ijk[3];
gctl::point3dc op_c;
gctl::point3dc r_j23[3];
gctl::point3dc r_j23_side[3];
gctl::point3dc r_ijk[3];
gctl::point3dc R, R_1st;
gctl::point3dc face_temp, edge_temp;
gctl::grav_tri_cone_gji* curr_tri;
gctl::gravcone_para_gji* gp;
R_1st.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R_1st.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R_1st.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
R.x = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R.y = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R.z = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
op_c = a_op.s2c();
double point_sum = 0.0;
for (int j = 0; j < a_list.size(); j++)
{
curr_tri = a_list.at(j);
gp = curr_tri->att;
// 找到顶点在某个三棱锥中的局部排序
for (int t = 0; t < 3; t++)
{
if (vert_id == curr_tri->vert[t]->id)
{
local_id = t;
break;
}
}
//先处理顶面
r_j23[0] = *curr_tri->vert[local_id];
r_j23[1] = *curr_tri->vert[(local_id+1)%3];
r_j23[2] = *curr_tri->vert[(local_id+2)%3];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0]
r_ijk[1] = r_j23[1] - op_c;
r_ijk[2] = r_j23[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23[0])/L_j23;
wf = 2*atan2(beta, alpha);
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//计算面与边的乘积
face_temp = (wf*dot(gp->nface[0], R_1st)*gp->nf_rj[local_id] +
wf*dot(gp->nf_rj[local_id], R_1st)*gp->nface[0] +
wf_rj*dot(gp->nface[0], R_1st)*gp->nface[0]);
//观测点到右侧边
//计算a_rj,e_rj
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23[0],r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23);
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/
(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]));
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]);
edge_temp =
(Le*dot(gp->nedge[local_id],R_1st)*gp->nf_rj[local_id] +
Le*dot(gp->nj2_rj[local_id],R_1st)*gp->nface[0] +
Le_rj*dot(gp->nedge[local_id],R_1st)*gp->nface[0] +
Le*dot(gp->n2j_rj[local_id],R_1st)*gp->nface[local_id+1] +
Le_rj*dot(gp->nedge[local_id*3+5],R_1st)*gp->nface[local_id+1]);
//观测点到左侧边
//计算a_rj,e_rj
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23[0],r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23);
Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/
(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]));
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]);
edge_temp = edge_temp +
(Le*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nf_rj[local_id] +
Le*dot(gp->n3j_rj[local_id],R_1st)*gp->nface[0] +
Le_rj*dot(gp->nedge[(local_id+2)%3],R_1st)*gp->nface[0] +
Le*dot(gp->nj3_rj[local_id],R_1st)*gp->nface[(local_id+2)%3+1] +
Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5],R_1st)*gp->nface[(local_id+2)%3+1]);
//观测点到背侧
Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/
(L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3]));
edge_temp = edge_temp +
(Le*dot(gp->nedge[(local_id+1)%3],R_1st)*gp->nf_rj[local_id] +
Le*dot(gp->n23_rj[local_id],R_1st)*gp->nface[0]);
//转换r_j23为顶点右边侧面的情况
r_j23_side[0] = r_j23[0];
r_j23_side[1] = *curr_tri->vert[3];
r_j23_side[2] = r_j23[1];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
r_ijk[1] = r_j23_side[1] - op_c;
r_ijk[2] = r_j23_side[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23_side[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//累加face_temp
face_temp = face_temp +
wf_rj*dot(gp->nface[local_id+1],R_1st)*gp->nface[local_id+1];
//侧棱
//计算a_rj,e_rj
a_rj = dot(r_j23_side[0],r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23_side[0],r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23);
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]);
edge_temp = edge_temp +
(Le_rj*dot(gp->nedge[(local_id+1)*3],R_1st)*gp->nface[local_id+1] +
Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1],R_1st)*gp->nface[(local_id+2)%3+1]);
//转换r_j23为顶点左边侧面的情况
r_j23_side[0] = r_j23[0];
r_j23_side[1] = r_j23[2];
r_j23_side[2] = *curr_tri->vert[3];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
r_ijk[1] = r_j23_side[1] - op_c;
r_ijk[2] = r_j23_side[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23_side[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//累加face_temp
face_temp = face_temp +
wf_rj*dot(gp->nface[(local_id+2)%3+1],R_1st)*gp->nface[(local_id+2)%3+1];
point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(face_temp, R) - dot(edge_temp, R));
}
return point_sum;
}
double gobser_mGrad_tricone_vrr_sig(const std::vector<gctl::grav_tri_cone_gji*> &a_list,
int vert_id, const gctl::point3ds &a_op, const gctl::array<double> &rho)
{
int local_id;
double beta, beta_rj, alpha, alpha_rj;
double a_rj, e_rj, Le_rj, Le;
double wf, wf_rj;
double L_j23;
double L_ijk[3];
gctl::point3dc op_c;
gctl::point3dc r_j23[3];
gctl::point3dc r_j23_side[3];
gctl::point3dc r_ijk[3];
gctl::point3dc R;
gctl::point3dc face_temp, edge_temp;
gctl::grav_tri_cone_gji* curr_tri;
gctl::gravcone_para_gji* gp;
R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
op_c = a_op.s2c();
double point_sum = 0.0;
for (int j = 0; j < a_list.size(); j++)
{
curr_tri = a_list.at(j);
gp = curr_tri->att;
// 找到顶点在某个三棱锥中的局部排序
for (int t = 0; t < 3; t++)
{
if (vert_id == curr_tri->vert[t]->id)
{
local_id = t;
break;
}
}
//先处理顶面
r_j23[0] = *curr_tri->vert[local_id];
r_j23[1] = *curr_tri->vert[(local_id+1)%3];
r_j23[2] = *curr_tri->vert[(local_id+2)%3];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23[0] - op_c; //直接取r_ijk[0]
r_ijk[1] = r_j23[1] - op_c;
r_ijk[2] = r_j23[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0], cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23[0], cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23[0])/L_j23;
wf = 2*atan2(beta, alpha);
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//计算面与边的乘积
face_temp = (wf*dot(gp->nface[0], R)*gp->nf_rj[local_id] +
wf*dot(gp->nf_rj[local_id], R)*gp->nface[0] +
wf_rj*dot(gp->nface[0], R)*gp->nface[0]);
//观测点到右侧边
//计算a_rj,e_rj
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23[0],r_j23[0] - r_j23[1])/(gp->edglen[local_id]*L_j23);
Le = log((L_ijk[0]+L_ijk[1]+gp->edglen[local_id])/
(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]));
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[local_id]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[local_id]);
edge_temp =
(Le*dot(gp->nedge[local_id],R)*gp->nf_rj[local_id] +
Le*dot(gp->nj2_rj[local_id],R)*gp->nface[0] +
Le_rj*dot(gp->nedge[local_id],R)*gp->nface[0] +
Le*dot(gp->n2j_rj[local_id],R)*gp->nface[local_id+1] +
Le_rj*dot(gp->nedge[local_id*3+5],R)*gp->nface[local_id+1]);
//观测点到左侧边
//计算a_rj,e_rj
a_rj = dot(r_j23[0],r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23[0],r_j23[0] - r_j23[2])/(gp->edglen[(local_id+2)%3]*L_j23);
Le = log((L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3])/
(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]));
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[2]+gp->edglen[(local_id+2)%3]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[2]-gp->edglen[(local_id+2)%3]);
edge_temp = edge_temp +
(Le*dot(gp->nedge[(local_id+2)%3],R)*gp->nf_rj[local_id] +
Le*dot(gp->n3j_rj[local_id],R)*gp->nface[0] +
Le_rj*dot(gp->nedge[(local_id+2)%3],R)*gp->nface[0] +
Le*dot(gp->nj3_rj[local_id],R)*gp->nface[(local_id+2)%3+1] +
Le_rj*dot(gp->nedge[((local_id+2)%3)*3+5],R)*gp->nface[(local_id+2)%3+1]);
//观测点到背侧
Le = log((L_ijk[1]+L_ijk[2]+gp->edglen[(local_id+1)%3])/
(L_ijk[1]+L_ijk[2]-gp->edglen[(local_id+1)%3]));
edge_temp = edge_temp +
(Le*dot(gp->nedge[(local_id+1)%3],R)*gp->nf_rj[local_id] +
Le*dot(gp->n23_rj[local_id],R)*gp->nface[0]);
//转换r_j23为顶点右边侧面的情况
r_j23_side[0] = r_j23[0];
r_j23_side[1] = *curr_tri->vert[3];
r_j23_side[2] = r_j23[1];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
r_ijk[1] = r_j23_side[1] - op_c;
r_ijk[2] = r_j23_side[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23_side[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//累加face_temp
face_temp = face_temp +
wf_rj*dot(gp->nface[local_id+1],R)*gp->nface[local_id+1];
//侧棱
//计算a_rj,e_rj
a_rj = dot(r_j23_side[0],r_ijk[0])/(L_ijk[0]*L_j23);
e_rj = dot(r_j23_side[0],r_j23_side[0] - r_j23_side[1])/(gp->edglen[(local_id+1)*3]*L_j23);
Le_rj = (a_rj + e_rj)/(L_ijk[0]+L_ijk[1]+gp->edglen[(local_id+1)*3]) -
(a_rj - e_rj)/(L_ijk[0]+L_ijk[1]-gp->edglen[(local_id+1)*3]);
edge_temp = edge_temp +
(Le_rj*dot(gp->nedge[(local_id+1)*3],R)*gp->nface[local_id+1] +
Le_rj*dot(gp->nedge[3*((local_id+2)%3+1)+1],R)*gp->nface[(local_id+2)%3+1]);
//转换r_j23为顶点左边侧面的情况
r_j23_side[0] = r_j23[0];
r_j23_side[1] = r_j23[2];
r_j23_side[2] = *curr_tri->vert[3];
//确定观测点到三个顶点的矢量
r_ijk[0] = r_j23_side[0] - op_c; //直接取r_ijk[0]为rf
r_ijk[1] = r_j23_side[1] - op_c;
r_ijk[2] = r_j23_side[2] - op_c;
//计算对应的矢量长度
L_j23 = r_j23_side[0].module();
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
//计算wf和wf相对于rj的偏导数
beta = dot(r_ijk[0],cross(r_ijk[1],r_ijk[2]));
beta_rj = dot(r_j23_side[0],cross(r_ijk[1], r_ijk[2]))/L_j23;
alpha = L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]);
alpha_rj = (L_ijk[1]*L_ijk[2] + dot(r_ijk[1],r_ijk[2]))*dot(r_j23_side[0],r_ijk[0])/(L_j23*L_ijk[0]) +
dot(L_ijk[1]*r_ijk[2] + L_ijk[2]*r_ijk[1],r_j23_side[0])/L_j23;
wf_rj = 2*alpha*(beta_rj-beta*alpha_rj/alpha)/(alpha*alpha+beta*beta);
//累加face_temp
face_temp = face_temp +
wf_rj*dot(gp->nface[(local_id+2)%3+1],R)*gp->nface[(local_id+2)%3+1];
point_sum += 1e+8*GCTL_G0*rho[curr_tri->id]*(dot(edge_temp, R) - dot(face_temp, R));
}
return point_sum;
}
// 以下是具体的实现
double gkernel_tricone_gji_pot_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
double face_sum, edge_sum;
// 直角坐标系下观测点的位置
gctl::point3dc op_c;
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
gctl::point3dc face_tmp, edge_tmp;
gctl::point3dc re;
gctl::point3dc r_ijk[3];
double L_ijk[3];
gctl::gravcone_para_gji* gp = a_ele.att;
op_c = a_op.s2c();
face_sum = edge_sum = 0.0;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_tmp = gp->F[f] * r_ijk[0];
face_sum += dot(r_ijk[0],face_tmp)*wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.fget(f, e), op_c);
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
re = 0.5*(*a_ele.fget(f, e) + *a_ele.fget(f, (e+1)%3)) - op_c;
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_tmp = gp->E[e+3*f] * re;
edge_sum += dot(re, edge_tmp)*Le;
}
}
return -0.5e+8*GCTL_G0*(face_sum - edge_sum);
}
double gkernel_tricone_gji_vr_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
double face_sum, edge_sum;
// 直角坐标系下观测点的位置
gctl::point3dc op_c;
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
gctl::point3dc face_tmp, edge_tmp;
// 注意这里R并不是一个直角坐标系下的点 我们只是借用向量操作而已
gctl::point3dc R;
gctl::point3dc re;
gctl::point3dc r_ijk[3];
double L_ijk[3];
gctl::gravcone_para_gji* gp = a_ele.att;
R.x = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R.y = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R.z = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
op_c = a_op.s2c();
face_sum = edge_sum = 0.0;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_tmp = gp->F[f] * r_ijk[0];
face_sum += dot(R,face_tmp)*wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.fget(f, e), op_c);
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
re = 0.5*(*a_ele.fget(f, e) + *a_ele.fget(f, (e+1)%3)) - op_c;
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_tmp = gp->E[e+3*f] * re;
edge_sum += dot(R,edge_tmp)*Le;
}
}
return -1.0e+8*GCTL_G0*(face_sum - edge_sum);
}
double gkernel_tricone_gji_vrp_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
double face_sum,edge_sum;
// 直角坐标系下观测点的位置
gctl::point3dc op_c;
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
gctl::point3dc face_tmp, edge_tmp;
// 这里我们需要完整的转换矩阵
gctl::tensor R;
gctl::point3dc r_ijk[3];
double L_ijk[3];
gctl::gravcone_para_gji* gp = a_ele.att;
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][2] = 0.0;
op_c = a_op.s2c();
face_sum = edge_sum = 0.0;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2];
face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2];
face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2];
face_sum += (R[2][0]*face_tmp.x + R[2][1]*face_tmp.y + R[2][2]*face_tmp.z) * wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.fget(f, e), op_c);
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2];
edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2];
edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2];
edge_sum += (R[2][0]*edge_tmp.x + R[2][1]*edge_tmp.y + R[2][2]*edge_tmp.z) * Le;
}
}
return 1.0e+8*GCTL_G0*(face_sum - edge_sum);
}
double gkernel_tricone_gji_vrt_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
double face_sum,edge_sum;
// 直角坐标系下观测点的位置
gctl::point3dc op_c;
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
gctl::point3dc face_tmp, edge_tmp;
// 这里我们需要完整的转换矩阵
gctl::tensor R;
gctl::point3dc r_ijk[3];
double L_ijk[3];
gctl::gravcone_para_gji* gp = a_ele.att;
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][2] = 0.0;
op_c = a_op.s2c();
face_sum = edge_sum = 0.0;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2];
face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2];
face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2];
face_sum += (R[1][0]*face_tmp.x + R[1][1]*face_tmp.y + R[1][2]*face_tmp.z) * wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.fget(f, e), op_c);
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2];
edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2];
edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2];
edge_sum += (R[1][0]*edge_tmp.x + R[1][1]*edge_tmp.y + R[1][2]*edge_tmp.z) * Le;
}
}
return 1.0e+8*GCTL_G0*(face_sum - edge_sum);
}
double gkernel_tricone_gji_vrr_sig(const gctl::grav_tri_cone_gji &a_ele, const gctl::point3ds &a_op)
{
int f,e;
double Le,wf;
double dv1,dv2;
double face_sum,edge_sum;
// 直角坐标系下观测点的位置
gctl::point3dc op_c;
// 注意face_tmp与edge_tmp并不是直角坐标系下的点 我们只是借用向量操作而已
gctl::point3dc face_tmp, edge_tmp;
// 这里我们需要完整的转换矩阵
gctl::tensor R;
gctl::point3dc r_ijk[3];
double L_ijk[3];
gctl::gravcone_para_gji* gp = a_ele.att;
R[0][0] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][1] = sin((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[0][2] = cos((0.5-a_op.lat/180.0)*GCTL_Pi);
R[1][0] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][1] = cos((0.5-a_op.lat/180.0)*GCTL_Pi)*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[1][2] = -1.0*sin((0.5-a_op.lat/180.0)*GCTL_Pi);
R[2][0] = -1.0*sin((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][1] = cos((2.0+a_op.lon/180.0)*GCTL_Pi);
R[2][2] = 0.0;
op_c = a_op.s2c();
face_sum = edge_sum = 0.0;
for (f = 0; f < 4; f++)
{
r_ijk[0] = *a_ele.fget(f, 0) - op_c;
r_ijk[1] = *a_ele.fget(f, 1) - op_c;
r_ijk[2] = *a_ele.fget(f, 2) - op_c;
L_ijk[0] = r_ijk[0].module();
L_ijk[1] = r_ijk[1].module();
L_ijk[2] = r_ijk[2].module();
wf =2*atan2(dot(r_ijk[0],cross(r_ijk[1],r_ijk[2])),
L_ijk[0]*L_ijk[1]*L_ijk[2] + L_ijk[0]*dot(r_ijk[1],r_ijk[2]) +
L_ijk[1]*dot(r_ijk[2],r_ijk[0]) + L_ijk[2]*dot(r_ijk[0],r_ijk[1]));
face_tmp.x = gp->F[f].val[0][0]*R[0][0] + gp->F[f].val[1][0]*R[0][1] + gp->F[f].val[2][0]*R[0][2];
face_tmp.y = gp->F[f].val[0][1]*R[0][0] + gp->F[f].val[1][1]*R[0][1] + gp->F[f].val[2][1]*R[0][2];
face_tmp.z = gp->F[f].val[0][2]*R[0][0] + gp->F[f].val[1][2]*R[0][1] + gp->F[f].val[2][2]*R[0][2];
face_sum += (R[0][0]*face_tmp.x + R[0][1]*face_tmp.y + R[0][2]*face_tmp.z) * wf;
for (e = 0; e < 3; e++)
{
dv1 = distance(*a_ele.fget(f, e), op_c);
dv2 = distance(*a_ele.fget(f, (e+1)%3), op_c);
Le = log((dv1+dv2+gp->edglen[e+3*f])/(dv1+dv2-gp->edglen[e+3*f]));
edge_tmp.x = gp->E[e+3*f].val[0][0]*R[0][0] + gp->E[e+3*f].val[1][0]*R[0][1] + gp->E[e+3*f].val[2][0]*R[0][2];
edge_tmp.y = gp->E[e+3*f].val[0][1]*R[0][0] + gp->E[e+3*f].val[1][1]*R[0][1] + gp->E[e+3*f].val[2][1]*R[0][2];
edge_tmp.z = gp->E[e+3*f].val[0][2]*R[0][0] + gp->E[e+3*f].val[1][2]*R[0][1] + gp->E[e+3*f].val[2][2]*R[0][2];
edge_sum += (R[0][0]*edge_tmp.x + R[0][1]*edge_tmp.y + R[0][2]*edge_tmp.z) * Le;
}
}
return -1.0e+8*GCTL_G0*(face_sum - edge_sum);
}