835 lines
32 KiB
C++
835 lines
32 KiB
C++
/********************************************************
|
|
* ██████╗ ██████╗████████╗██╗
|
|
* ██╔════╝ ██╔════╝╚══██╔══╝██║
|
|
* ██║ ███╗██║ ██║ ██║
|
|
* ██║ ██║██║ ██║ ██║
|
|
* ╚██████╔╝╚██████╗ ██║ ███████╗
|
|
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
|
|
* Geophysical Computational Tools & Library (GCTL)
|
|
*
|
|
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
|
|
*
|
|
* GCTL is distributed under a dual licensing scheme. You can redistribute
|
|
* it and/or modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation, either version 2
|
|
* of the License, or (at your option) any later version. You should have
|
|
* received a copy of the GNU Lesser General Public License along with this
|
|
* program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* If the terms and conditions of the LGPL v.2. would prevent you from using
|
|
* the GCTL, please consider the option to obtain a commercial license for a
|
|
* fee. These licenses are offered by the GCTL's original author. As a rule,
|
|
* licenses are provided "as-is", unlimited in time for a one time fee. Please
|
|
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
|
|
* to include some description of your company and the realm of its activities.
|
|
* Also add information on how to contact you by electronic and paper mail.
|
|
******************************************************/
|
|
|
|
#include "mkernel_tesseroid.h"
|
|
|
|
#ifdef GCTL_POTENTIAL_MAGTESS
|
|
|
|
#include "magtess/constants.h"
|
|
#include "magtess/parsers.h"
|
|
#include "magtess/linalg.h"
|
|
#include "magtess/geometry.h"
|
|
#include "magtess/grav_tess.h"
|
|
|
|
void gctl::set_geomag_angles(array<magtess_para> &out_para,
|
|
const array<double> &inclina, const array<double> &declina)
|
|
{
|
|
if (out_para.size() != inclina.size() || out_para.size() != declina.size())
|
|
{
|
|
throw std::runtime_error("[gctl::set_geomag_angles] Invalid sizes.");
|
|
}
|
|
|
|
for (size_t i = 0; i < out_para.size(); i++)
|
|
{
|
|
out_para[i].geo_iarc = inclina[i]*GCTL_Pi/180.0;
|
|
out_para[i].geo_darc = declina[i]*GCTL_Pi/180.0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::callink_magnetic_para(array<mag_tesseroid> &in_tess,
|
|
array<magtess_para> &out_para, const point3dc &mag_B)
|
|
{
|
|
if (in_tess.size() != out_para.size())
|
|
{
|
|
throw std::runtime_error("[gctl::callink_magnetic_para] Invalid sizes.");
|
|
}
|
|
|
|
for (size_t i = 0; i < in_tess.size(); i++)
|
|
{
|
|
// magnetization vector at the local coordinates
|
|
// note here the postive direction of the inclination angle is downward
|
|
// note here the postive direction of the declination angle is clockwise
|
|
out_para[i].bx = mag_B.x;
|
|
out_para[i].by = mag_B.y;
|
|
out_para[i].bz = mag_B.z;
|
|
out_para[i].h = sqrt(power2(mag_B.x) + power2(mag_B.y));
|
|
out_para[i].f = sqrt(power2(mag_B.x) + power2(mag_B.y) + power2(mag_B.z));
|
|
|
|
in_tess[i].att = out_para.get(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::callink_magnetic_para(array<mag_tesseroid> &in_tess,
|
|
array<magtess_para> &out_para, const array<point3dc> &mag_B)
|
|
{
|
|
if (in_tess.size() != out_para.size() || in_tess.size() != mag_B.size())
|
|
{
|
|
throw std::runtime_error("[gctl::callink_magnetic_para] Invalid sizes.");
|
|
}
|
|
|
|
for (size_t i = 0; i < in_tess.size(); i++)
|
|
{
|
|
// magnetization vector at the local coordinates
|
|
// note here the postive direction of the inclination angle is downward
|
|
// note here the postive direction of the declination angle is clockwise
|
|
out_para[i].bx = mag_B[i].x;
|
|
out_para[i].by = mag_B[i].y;
|
|
out_para[i].bz = mag_B[i].z;
|
|
out_para[i].h = sqrt(power2(mag_B[i].x) + power2(mag_B[i].y));
|
|
out_para[i].f = sqrt(power2(mag_B[i].x) + power2(mag_B[i].y) + power2(mag_B[i].z));
|
|
|
|
in_tess[i].att = out_para.get(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void gctl::callink_magnetic_para_earth_sph(array<mag_tesseroid> &in_tess,
|
|
array<magtess_para> &out_para, double inclina_deg, double declina_deg, double field_tense)
|
|
{
|
|
if (declina_deg < -180.0 || declina_deg > 180.0 ||
|
|
inclina_deg < -90 || inclina_deg > 90 || field_tense < 0.0)
|
|
{
|
|
throw invalid_argument("Invalid parameters. From gctl::callink_magnetic_para_earth(...)");
|
|
}
|
|
|
|
double I = inclina_deg*M_PI/180.0;
|
|
double A = declina_deg*M_PI/180.0;
|
|
|
|
point3dc mag_z;
|
|
for (size_t i = 0; i < in_tess.size(); i++)
|
|
{
|
|
// magnetization vector at the local coordinates
|
|
// note here the postive direction of the inclination angle is downward
|
|
// note here the postive direction of the declination angle is clockwise
|
|
mag_z.x = cos(I)*sin(A);
|
|
mag_z.y = cos(I)*cos(A);
|
|
mag_z.z = -1.0*sin(I);
|
|
// magnetic susceptibility is taken as one here
|
|
mag_z = field_tense * mag_z.normal();
|
|
|
|
out_para[i].bx = mag_z.x;
|
|
out_para[i].by = mag_z.y;
|
|
out_para[i].bz = mag_z.z;
|
|
out_para[i].h = sqrt(power2(mag_z.x) + power2(mag_z.y));
|
|
out_para[i].f = sqrt(power2(mag_z.x) + power2(mag_z.y) + power2(mag_z.z));
|
|
|
|
in_tess[i].att = out_para.get(i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
typedef void (*magkernel_tess_ptr)(gctl::matrix<double> &out_kernel, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, int gauss_order, gctl::verbose_type_e verbose);
|
|
|
|
void magkernel_mag_tesseroid_hax(gctl::matrix<double> &out_kernel, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, int gauss_order, gctl::verbose_type_e verbose);
|
|
void magkernel_mag_tesseroid_hay(gctl::matrix<double> &out_kernel, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, int gauss_order, gctl::verbose_type_e verbose);
|
|
void magkernel_mag_tesseroid_za(gctl::matrix<double> &out_kernel, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, int gauss_order, gctl::verbose_type_e verbose);
|
|
void magkernel_mag_tesseroid_deltaT(gctl::matrix<double> &out_kernel, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, int gauss_order, gctl::verbose_type_e verbose);
|
|
|
|
void gctl::magkernel(matrix<double> &out_kernel, const array<mag_tesseroid> &ele,
|
|
const array<point3ds> &ops, magnetic_field_type_e comp_id, int gauss_order, verbose_type_e verbose)
|
|
{
|
|
magkernel_tess_ptr mag_tesseroid_kernel;
|
|
switch (comp_id)
|
|
{
|
|
case Hax:
|
|
mag_tesseroid_kernel = magkernel_mag_tesseroid_hax;
|
|
break;
|
|
case Hay:
|
|
mag_tesseroid_kernel = magkernel_mag_tesseroid_hay;
|
|
break;
|
|
case Za:
|
|
mag_tesseroid_kernel = magkernel_mag_tesseroid_za;
|
|
break;
|
|
case DeltaT:
|
|
mag_tesseroid_kernel = magkernel_mag_tesseroid_deltaT;
|
|
break;
|
|
default:
|
|
mag_tesseroid_kernel = magkernel_mag_tesseroid_za;
|
|
break;
|
|
}
|
|
return mag_tesseroid_kernel(out_kernel, ele, ops, gauss_order, verbose);
|
|
}
|
|
|
|
|
|
typedef void (*magobser_tess_ptr)(gctl::array<double> &out_obs, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &sus, int gauss_order,
|
|
gctl::verbose_type_e verbose);
|
|
|
|
void magobser_mag_tesseroid_hax(gctl::array<double> &out_obs, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &sus, int gauss_order,
|
|
gctl::verbose_type_e verbose);
|
|
void magobser_mag_tesseroid_hay(gctl::array<double> &out_obs, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &sus, int gauss_order,
|
|
gctl::verbose_type_e verbose);
|
|
void magobser_mag_tesseroid_za(gctl::array<double> &out_obs, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &sus, int gauss_order,
|
|
gctl::verbose_type_e verbose);
|
|
void magobser_mag_tesseroid_deltaT(gctl::array<double> &out_obs, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &sus, int gauss_order,
|
|
gctl::verbose_type_e verbose);
|
|
|
|
void gctl::magobser(array<double> &out_obs, const array<mag_tesseroid> &ele, const array<point3ds> &ops,
|
|
const array<double> &sus, magnetic_field_type_e comp_id, int gauss_order, verbose_type_e verbose)
|
|
{
|
|
magobser_tess_ptr mag_tesseroid_obser;
|
|
switch (comp_id)
|
|
{
|
|
case Hax:
|
|
mag_tesseroid_obser = magobser_mag_tesseroid_hax;
|
|
break;
|
|
case Hay:
|
|
mag_tesseroid_obser = magobser_mag_tesseroid_hay;
|
|
break;
|
|
case Za:
|
|
mag_tesseroid_obser = magobser_mag_tesseroid_za;
|
|
break;
|
|
case DeltaT:
|
|
mag_tesseroid_obser = magobser_mag_tesseroid_deltaT;
|
|
break;
|
|
default:
|
|
mag_tesseroid_obser = magobser_mag_tesseroid_za;
|
|
break;
|
|
}
|
|
return mag_tesseroid_obser(out_obs, ele, ops, sus, gauss_order, verbose);
|
|
}
|
|
|
|
// 以下是具体的实现
|
|
|
|
void magkernel_mag_tesseroid_hax(gctl::matrix<double> &out_kernel, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, int gauss_order, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
MAG_TESSEROID tess;
|
|
GLQ *glqlon, *glqlat, *glqr;
|
|
|
|
double gtt_v[3];
|
|
double B_to_H;
|
|
double M_vect[3] = {0, 0, 0};
|
|
double M_vect_p[3] = {0, 0, 0};
|
|
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (ele[j].att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_mag_tesseroid_hax(...)");
|
|
}
|
|
|
|
gctl::magtess_para *mp;
|
|
gctl::progress_bar bar(e_size, "magkernel_hax");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
mp = ele[j].att;
|
|
tess.suscept = 1.0; // unit susception
|
|
tess.density = 1.0; // unit density
|
|
tess.w = ele[j].dl->lon;
|
|
tess.e = ele[j].ur->lon;
|
|
tess.s = ele[j].dl->lat;
|
|
tess.n = ele[j].ur->lat;
|
|
tess.r1 = ele[j].dl->rad;
|
|
tess.r2 = ele[j].ur->rad;
|
|
tess.Bx = mp->bx/(400.0*GCTL_Pi);
|
|
tess.By = mp->by/(400.0*GCTL_Pi);
|
|
tess.Bz = mp->bz/(400.0*GCTL_Pi);
|
|
tess.cos_a1 = cos(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.sin_a1 = sin(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.cos_b1 = cos(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
tess.sin_b1 = sin(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
B_to_H = tess.suscept/(M_0);
|
|
M_vect[0] = tess.By;// * B_to_H; // We implemented the conversion in the function callink_magnetic_para_earth_sph()
|
|
M_vect[1] = tess.Bx;// * B_to_H;
|
|
M_vect[2] = tess.Bz;// * B_to_H;
|
|
|
|
#pragma omp parallel for private(i, gtt_v, M_vect_p, glqlon, glqlat, glqr) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
conv_vect_cblas(M_vect, (tess.w + tess.e)*0.5, (tess.s + tess.n)*0.5, ops[i].lon, ops[i].lat, M_vect_p);
|
|
|
|
glqlon = glq_new(gauss_order, -1, 1);
|
|
glqlat = glq_new(gauss_order, -1, 1);
|
|
glqr = glq_new(gauss_order, -1, 1);
|
|
|
|
gtt_v[0] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxx, TESSEROID_GXX_SIZE_RATIO);
|
|
gtt_v[1] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxy, TESSEROID_GXY_SIZE_RATIO);
|
|
gtt_v[2] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxz, TESSEROID_GXZ_SIZE_RATIO);
|
|
|
|
// This is in nT, and we reversed the positive direction here to the easting direction
|
|
out_kernel[i][j] = -1.0*M_0*(gtt_v[0]*M_vect_p[0] + gtt_v[1]*M_vect_p[1] + gtt_v[2]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
|
|
glq_free(glqlon);
|
|
glq_free(glqlat);
|
|
glq_free(glqr);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void magkernel_mag_tesseroid_hay(gctl::matrix<double> &out_kernel, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, int gauss_order, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
MAG_TESSEROID tess;
|
|
GLQ *glqlon, *glqlat, *glqr;
|
|
|
|
double gtt_v[3];
|
|
double B_to_H;
|
|
double M_vect[3] = {0, 0, 0};
|
|
double M_vect_p[3] = {0, 0, 0};
|
|
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (ele[j].att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_mag_tesseroid_hay(...)");
|
|
}
|
|
|
|
gctl::magtess_para *mp;
|
|
gctl::progress_bar bar(e_size, "magkernel_hay");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
mp = ele[j].att;
|
|
tess.suscept = 1.0; // unit susception
|
|
tess.density = 1.0; // unit density
|
|
tess.w = ele[j].dl->lon;
|
|
tess.e = ele[j].ur->lon;
|
|
tess.s = ele[j].dl->lat;
|
|
tess.n = ele[j].ur->lat;
|
|
tess.r1 = ele[j].dl->rad;
|
|
tess.r2 = ele[j].ur->rad;
|
|
tess.Bx = mp->bx/(400.0*GCTL_Pi);
|
|
tess.By = mp->by/(400.0*GCTL_Pi);
|
|
tess.Bz = mp->bz/(400.0*GCTL_Pi);
|
|
tess.cos_a1 = cos(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.sin_a1 = sin(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.cos_b1 = cos(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
tess.sin_b1 = sin(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
B_to_H = tess.suscept/(M_0);
|
|
M_vect[0] = tess.By;// * B_to_H; // We implemented the conversion in the function callink_magnetic_para_earth_sph()
|
|
M_vect[1] = tess.Bx;// * B_to_H;
|
|
M_vect[2] = tess.Bz;// * B_to_H;
|
|
|
|
#pragma omp parallel for private(i, gtt_v, M_vect_p, glqlon, glqlat, glqr) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
conv_vect_cblas(M_vect, (tess.w + tess.e)*0.5, (tess.s + tess.n)*0.5, ops[i].lon, ops[i].lat, M_vect_p);
|
|
|
|
glqlon = glq_new(gauss_order, -1, 1);
|
|
glqlat = glq_new(gauss_order, -1, 1);
|
|
glqr = glq_new(gauss_order, -1, 1);
|
|
|
|
gtt_v[0] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxy, TESSEROID_GXY_SIZE_RATIO);
|
|
gtt_v[1] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyy, TESSEROID_GYY_SIZE_RATIO);
|
|
gtt_v[2] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyz, TESSEROID_GYZ_SIZE_RATIO);
|
|
|
|
// This is in nT
|
|
out_kernel[i][j] = M_0*(gtt_v[0]*M_vect_p[0] + gtt_v[1]*M_vect_p[1] + gtt_v[2]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
|
|
glq_free(glqlon);
|
|
glq_free(glqlat);
|
|
glq_free(glqr);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void magkernel_mag_tesseroid_za(gctl::matrix<double> &out_kernel, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, int gauss_order, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
MAG_TESSEROID tess;
|
|
GLQ *glqlon, *glqlat, *glqr;
|
|
|
|
double gtt_v[3];
|
|
double B_to_H;
|
|
double M_vect[3] = {0, 0, 0};
|
|
double M_vect_p[3] = {0, 0, 0};
|
|
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (ele[j].att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_mag_tesseroid_za(...)");
|
|
}
|
|
|
|
gctl::magtess_para *mp;
|
|
gctl::progress_bar bar(e_size, "magkernel_za");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
mp = ele[j].att;
|
|
tess.suscept = 1.0; // unit susception
|
|
tess.density = 1.0; // unit density
|
|
tess.w = ele[j].dl->lon;
|
|
tess.e = ele[j].ur->lon;
|
|
tess.s = ele[j].dl->lat;
|
|
tess.n = ele[j].ur->lat;
|
|
tess.r1 = ele[j].dl->rad;
|
|
tess.r2 = ele[j].ur->rad;
|
|
tess.Bx = mp->bx/(400.0*GCTL_Pi);
|
|
tess.By = mp->by/(400.0*GCTL_Pi);
|
|
tess.Bz = mp->bz/(400.0*GCTL_Pi);
|
|
tess.cos_a1 = cos(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.sin_a1 = sin(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.cos_b1 = cos(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
tess.sin_b1 = sin(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
B_to_H = tess.suscept/(M_0);
|
|
M_vect[0] = tess.By;// * B_to_H; // We implemented the conversion in the function callink_magnetic_para_earth_sph()
|
|
M_vect[1] = tess.Bx;// * B_to_H;
|
|
M_vect[2] = tess.Bz;// * B_to_H;
|
|
|
|
#pragma omp parallel for private(i, gtt_v, M_vect_p, glqlon, glqlat, glqr) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
conv_vect_cblas(M_vect, (tess.w + tess.e)*0.5, (tess.s + tess.n)*0.5, ops[i].lon, ops[i].lat, M_vect_p);
|
|
|
|
glqlon = glq_new(gauss_order, -1, 1);
|
|
glqlat = glq_new(gauss_order, -1, 1);
|
|
glqr = glq_new(gauss_order, -1, 1);
|
|
|
|
gtt_v[0] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxz, TESSEROID_GXZ_SIZE_RATIO);
|
|
gtt_v[1] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyz, TESSEROID_GYZ_SIZE_RATIO);
|
|
gtt_v[2] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gzz, TESSEROID_GZZ_SIZE_RATIO);
|
|
|
|
// This is in nT, and we reversed the positive direction here to the downward direction
|
|
out_kernel[i][j] = -1.0*M_0*(gtt_v[0]*M_vect_p[0] + gtt_v[1]*M_vect_p[1] + gtt_v[2]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
|
|
glq_free(glqlon);
|
|
glq_free(glqlat);
|
|
glq_free(glqr);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void magkernel_mag_tesseroid_deltaT(gctl::matrix<double> &out_kernel, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, int gauss_order, gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_kernel.resize(o_size, e_size);
|
|
|
|
MAG_TESSEROID tess;
|
|
GLQ *glqlon, *glqlat, *glqr;
|
|
|
|
double gtt_v[6];
|
|
//double B_to_H;
|
|
double M_vect[3] = {0, 0, 0};
|
|
double M_vect_p[3] = {0, 0, 0};
|
|
double Hax, Hay, Za;
|
|
double hax_f, hay_f, za_f;
|
|
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (ele[j].att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magkernel_mag_tesseroid_za(...)");
|
|
}
|
|
|
|
gctl::magtess_para *mp;
|
|
gctl::progress_bar bar(e_size, "magkernel_deltaT");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
mp = ele[j].att;
|
|
tess.suscept = 1.0; // unit susception
|
|
tess.density = 1.0; // unit density
|
|
tess.w = ele[j].dl->lon;
|
|
tess.e = ele[j].ur->lon;
|
|
tess.s = ele[j].dl->lat;
|
|
tess.n = ele[j].ur->lat;
|
|
tess.r1 = ele[j].dl->rad;
|
|
tess.r2 = ele[j].ur->rad;
|
|
tess.Bx = mp->bx/(400.0*GCTL_Pi);
|
|
tess.By = mp->by/(400.0*GCTL_Pi);
|
|
tess.Bz = mp->bz/(400.0*GCTL_Pi);
|
|
tess.cos_a1 = cos(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.sin_a1 = sin(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.cos_b1 = cos(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
tess.sin_b1 = sin(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
//B_to_H = tess.suscept/(M_0);
|
|
M_vect[0] = tess.By;// * B_to_H; // We implemented the conversion in the function callink_magnetic_para_earth_sph()
|
|
M_vect[1] = tess.Bx;// * B_to_H;
|
|
M_vect[2] = tess.Bz;// * B_to_H;
|
|
|
|
hax_f = cos(mp->geo_iarc)*sin(GCTL_Pi*mp->geo_darc);
|
|
hay_f = cos(mp->geo_iarc)*cos(GCTL_Pi*mp->geo_darc);
|
|
za_f = sin(mp->geo_iarc);
|
|
|
|
#pragma omp parallel for private(i, gtt_v, M_vect_p, Hax, Hay, Za, glqlon, glqlat, glqr) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
conv_vect_cblas(M_vect, (tess.w + tess.e)*0.5, (tess.s + tess.n)*0.5, ops[i].lon, ops[i].lat, M_vect_p);
|
|
|
|
glqlon = glq_new(gauss_order, -1, 1);
|
|
glqlat = glq_new(gauss_order, -1, 1);
|
|
glqr = glq_new(gauss_order, -1, 1);
|
|
|
|
gtt_v[0] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxx, TESSEROID_GXX_SIZE_RATIO);
|
|
gtt_v[1] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxy, TESSEROID_GXY_SIZE_RATIO);
|
|
gtt_v[2] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxz, TESSEROID_GXZ_SIZE_RATIO);
|
|
gtt_v[3] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyy, TESSEROID_GYY_SIZE_RATIO);
|
|
gtt_v[4] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyz, TESSEROID_GYZ_SIZE_RATIO);
|
|
gtt_v[5] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gzz, TESSEROID_GZZ_SIZE_RATIO);
|
|
|
|
// This is in nT, and we reversed the positive direction here to the downward direction
|
|
Hax = M_0*(gtt_v[0]*M_vect_p[0] + gtt_v[1]*M_vect_p[1] + gtt_v[2]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
Hay = M_0*(gtt_v[1]*M_vect_p[0] + gtt_v[3]*M_vect_p[1] + gtt_v[4]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
Za = -1.0*M_0*(gtt_v[2]*M_vect_p[0] + gtt_v[4]*M_vect_p[1] + gtt_v[5]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
|
|
out_kernel[i][j] = hax_f*Hax + hay_f*Hay + za_f*Za;
|
|
|
|
glq_free(glqlon);
|
|
glq_free(glqlat);
|
|
glq_free(glqr);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void magobser_mag_tesseroid_hax(gctl::array<double> &out_obs, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &sus, int gauss_order,
|
|
gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
MAG_TESSEROID tess;
|
|
GLQ *glqlon, *glqlat, *glqr;
|
|
|
|
double gtt_v[3];
|
|
//double B_to_H;
|
|
double M_vect[3] = {0, 0, 0};
|
|
double M_vect_p[3] = {0, 0, 0};
|
|
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (ele[j].att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magobser_mag_tesseroid_hax(...)");
|
|
}
|
|
|
|
gctl::magtess_para *mp;
|
|
gctl::progress_bar bar(e_size, "magobser_hax");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
mp = ele[j].att;
|
|
tess.suscept = sus[j]; // unit susception
|
|
tess.density = 1.0; // unit density
|
|
tess.w = ele[j].dl->lon;
|
|
tess.e = ele[j].ur->lon;
|
|
tess.s = ele[j].dl->lat;
|
|
tess.n = ele[j].ur->lat;
|
|
tess.r1 = ele[j].dl->rad;
|
|
tess.r2 = ele[j].ur->rad;
|
|
tess.Bx = mp->bx/(400.0*GCTL_Pi);
|
|
tess.By = mp->by/(400.0*GCTL_Pi);
|
|
tess.Bz = mp->bz/(400.0*GCTL_Pi);
|
|
tess.cos_a1 = cos(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.sin_a1 = sin(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.cos_b1 = cos(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
tess.sin_b1 = sin(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
//B_to_H = tess.suscept/(M_0);
|
|
M_vect[0] = tess.By;// * B_to_H; // We implemented the conversion in the function callink_magnetic_para_earth_sph()
|
|
M_vect[1] = tess.Bx;// * B_to_H;
|
|
M_vect[2] = tess.Bz;// * B_to_H;
|
|
|
|
#pragma omp parallel for private(i, gtt_v, M_vect_p, glqlon, glqlat, glqr) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
conv_vect_cblas(M_vect, (tess.w + tess.e)*0.5, (tess.s + tess.n)*0.5, ops[i].lon, ops[i].lat, M_vect_p);
|
|
|
|
glqlon = glq_new(gauss_order, -1, 1);
|
|
glqlat = glq_new(gauss_order, -1, 1);
|
|
glqr = glq_new(gauss_order, -1, 1);
|
|
|
|
gtt_v[0] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxx, TESSEROID_GXX_SIZE_RATIO);
|
|
gtt_v[1] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxy, TESSEROID_GXY_SIZE_RATIO);
|
|
gtt_v[2] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxz, TESSEROID_GXZ_SIZE_RATIO);
|
|
|
|
// This is in nT, and we reversed the positive direction here to the easting direction
|
|
out_obs[i] -= sus[j]*M_0*(gtt_v[0]*M_vect_p[0] + gtt_v[1]*M_vect_p[1] + gtt_v[2]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
|
|
glq_free(glqlon);
|
|
glq_free(glqlat);
|
|
glq_free(glqr);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void magobser_mag_tesseroid_hay(gctl::array<double> &out_obs, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &sus, int gauss_order,
|
|
gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
MAG_TESSEROID tess;
|
|
GLQ *glqlon, *glqlat, *glqr;
|
|
|
|
double gtt_v[3];
|
|
double B_to_H;
|
|
double M_vect[3] = {0, 0, 0};
|
|
double M_vect_p[3] = {0, 0, 0};
|
|
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (ele[j].att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magobser_mag_tesseroid_hay(...)");
|
|
}
|
|
|
|
gctl::magtess_para *mp;
|
|
gctl::progress_bar bar(e_size, "magobser_hay");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
mp = ele[j].att;
|
|
tess.suscept = sus[j]; // unit susception
|
|
tess.density = 1.0; // unit density
|
|
tess.w = ele[j].dl->lon;
|
|
tess.e = ele[j].ur->lon;
|
|
tess.s = ele[j].dl->lat;
|
|
tess.n = ele[j].ur->lat;
|
|
tess.r1 = ele[j].dl->rad;
|
|
tess.r2 = ele[j].ur->rad;
|
|
tess.Bx = mp->bx/(400.0*GCTL_Pi);
|
|
tess.By = mp->by/(400.0*GCTL_Pi);
|
|
tess.Bz = mp->bz/(400.0*GCTL_Pi);
|
|
tess.cos_a1 = cos(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.sin_a1 = sin(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.cos_b1 = cos(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
tess.sin_b1 = sin(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
B_to_H = tess.suscept/(M_0);
|
|
M_vect[0] = tess.By;// * B_to_H; // We implemented the conversion in the function callink_magnetic_para_earth_sph()
|
|
M_vect[1] = tess.Bx;// * B_to_H;
|
|
M_vect[2] = tess.Bz;// * B_to_H;
|
|
|
|
#pragma omp parallel for private(i, gtt_v, M_vect_p, glqlon, glqlat, glqr) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
conv_vect_cblas(M_vect, (tess.w + tess.e)*0.5, (tess.s + tess.n)*0.5, ops[i].lon, ops[i].lat, M_vect_p);
|
|
|
|
glqlon = glq_new(gauss_order, -1, 1);
|
|
glqlat = glq_new(gauss_order, -1, 1);
|
|
glqr = glq_new(gauss_order, -1, 1);
|
|
|
|
gtt_v[0] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxy, TESSEROID_GXY_SIZE_RATIO);
|
|
gtt_v[1] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyy, TESSEROID_GYY_SIZE_RATIO);
|
|
gtt_v[2] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyz, TESSEROID_GYZ_SIZE_RATIO);
|
|
|
|
// This is in nT
|
|
out_obs[i] += sus[j]*M_0*(gtt_v[0]*M_vect_p[0] + gtt_v[1]*M_vect_p[1] + gtt_v[2]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
|
|
glq_free(glqlon);
|
|
glq_free(glqlat);
|
|
glq_free(glqr);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void magobser_mag_tesseroid_za(gctl::array<double> &out_obs, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &sus, int gauss_order,
|
|
gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
MAG_TESSEROID tess;
|
|
GLQ *glqlon, *glqlat, *glqr;
|
|
|
|
double gtt_v[3];
|
|
//double B_to_H;
|
|
double M_vect[3] = {0, 0, 0};
|
|
double M_vect_p[3] = {0, 0, 0};
|
|
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (ele[j].att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magobser_mag_tesseroid_za(...)");
|
|
}
|
|
|
|
gctl::magtess_para *mp;
|
|
gctl::progress_bar bar(e_size, "magobser_za");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
mp = ele[j].att;
|
|
tess.suscept = sus[j]; // unit susception
|
|
tess.density = 1.0; // unit density
|
|
tess.w = ele[j].dl->lon;
|
|
tess.e = ele[j].ur->lon;
|
|
tess.s = ele[j].dl->lat;
|
|
tess.n = ele[j].ur->lat;
|
|
tess.r1 = ele[j].dl->rad;
|
|
tess.r2 = ele[j].ur->rad;
|
|
tess.Bx = mp->bx/(400.0*GCTL_Pi);
|
|
tess.By = mp->by/(400.0*GCTL_Pi);
|
|
tess.Bz = mp->bz/(400.0*GCTL_Pi);
|
|
tess.cos_a1 = cos(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.sin_a1 = sin(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.cos_b1 = cos(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
tess.sin_b1 = sin(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
// We implemented the conversion in the function callink_magnetic_para_earth_sph()
|
|
//B_to_H = tess.suscept/(M_0);
|
|
M_vect[0] = tess.By;// * B_to_H;
|
|
M_vect[1] = tess.Bx;// * B_to_H;
|
|
M_vect[2] = tess.Bz;// * B_to_H;
|
|
|
|
#pragma omp parallel for private(i, gtt_v, M_vect_p, glqlon, glqlat, glqr) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
conv_vect_cblas(M_vect, (tess.w + tess.e)*0.5, (tess.s + tess.n)*0.5, ops[i].lon, ops[i].lat, M_vect_p);
|
|
|
|
glqlon = glq_new(gauss_order, -1, 1);
|
|
glqlat = glq_new(gauss_order, -1, 1);
|
|
glqr = glq_new(gauss_order, -1, 1);
|
|
|
|
gtt_v[0] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxz, TESSEROID_GXZ_SIZE_RATIO);
|
|
gtt_v[1] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyz, TESSEROID_GYZ_SIZE_RATIO);
|
|
gtt_v[2] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gzz, TESSEROID_GZZ_SIZE_RATIO);
|
|
|
|
// This is in nT, and we reversed the positive direction here to the downward direction
|
|
out_obs[i] -= sus[j]*M_0*(gtt_v[0]*M_vect_p[0] + gtt_v[1]*M_vect_p[1] + gtt_v[2]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
|
|
glq_free(glqlon);
|
|
glq_free(glqlat);
|
|
glq_free(glqr);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
void magobser_mag_tesseroid_deltaT(gctl::array<double> &out_obs, const gctl::array<gctl::mag_tesseroid> &ele,
|
|
const gctl::array<gctl::point3ds> &ops, const gctl::array<double> &sus, int gauss_order,
|
|
gctl::verbose_type_e verbose)
|
|
{
|
|
int i, j;
|
|
int o_size = ops.size();
|
|
int e_size = ele.size();
|
|
out_obs.resize(o_size, 0.0);
|
|
|
|
MAG_TESSEROID tess;
|
|
GLQ *glqlon, *glqlat, *glqr;
|
|
|
|
double gtt_v[6];
|
|
//double B_to_H;
|
|
double M_vect[3] = {0, 0, 0};
|
|
double M_vect_p[3] = {0, 0, 0};
|
|
double Hax, Hay, Za;
|
|
double hax_f, hay_f, za_f;
|
|
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (ele[j].att == nullptr) throw gctl::runtime_error("Magnetization parameter not set. from gctl::magobser_mag_tesseroid_deltaT(...)");
|
|
}
|
|
|
|
gctl::magtess_para *mp;
|
|
gctl::progress_bar bar(e_size, "magobser_deltaT");
|
|
for (j = 0; j < e_size; j++)
|
|
{
|
|
if (verbose == gctl::FullMsg) bar.progressed(j);
|
|
else if (verbose == gctl::ShortMsg) bar.progressed_simple(j);
|
|
|
|
mp = ele[j].att;
|
|
tess.suscept = sus[j]; // unit susception
|
|
tess.density = 1.0; // unit density
|
|
tess.w = ele[j].dl->lon;
|
|
tess.e = ele[j].ur->lon;
|
|
tess.s = ele[j].dl->lat;
|
|
tess.n = ele[j].ur->lat;
|
|
tess.r1 = ele[j].dl->rad;
|
|
tess.r2 = ele[j].ur->rad;
|
|
tess.Bx = mp->bx/(400.0*GCTL_Pi);
|
|
tess.By = mp->by/(400.0*GCTL_Pi);
|
|
tess.Bz = mp->bz/(400.0*GCTL_Pi);
|
|
tess.cos_a1 = cos(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.sin_a1 = sin(GCTL_Pi/2.0-GCTL_Pi*(tess.w+tess.e)*0.5/180.0);
|
|
tess.cos_b1 = cos(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
tess.sin_b1 = sin(GCTL_Pi*(tess.s+tess.n)*0.5/180.0);
|
|
// We implemented the conversion in the function callink_magnetic_para_earth_sph()
|
|
//B_to_H = tess.suscept/(M_0);
|
|
M_vect[0] = tess.By;// * B_to_H;
|
|
M_vect[1] = tess.Bx;// * B_to_H;
|
|
M_vect[2] = tess.Bz;// * B_to_H;
|
|
|
|
hax_f = cos(mp->geo_iarc)*sin(GCTL_Pi*mp->geo_darc);
|
|
hay_f = cos(mp->geo_iarc)*cos(GCTL_Pi*mp->geo_darc);
|
|
za_f = sin(mp->geo_iarc);
|
|
|
|
#pragma omp parallel for private(i, gtt_v, M_vect_p, Hax, Hay, Za, glqlon, glqlat, glqr) schedule(guided)
|
|
for (i = 0; i < o_size; i++)
|
|
{
|
|
conv_vect_cblas(M_vect, (tess.w + tess.e)*0.5, (tess.s + tess.n)*0.5, ops[i].lon, ops[i].lat, M_vect_p);
|
|
|
|
glqlon = glq_new(gauss_order, -1, 1);
|
|
glqlat = glq_new(gauss_order, -1, 1);
|
|
glqr = glq_new(gauss_order, -1, 1);
|
|
|
|
gtt_v[0] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxx, TESSEROID_GXX_SIZE_RATIO);
|
|
gtt_v[1] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxy, TESSEROID_GXY_SIZE_RATIO);
|
|
gtt_v[2] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gxz, TESSEROID_GXZ_SIZE_RATIO);
|
|
gtt_v[3] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyy, TESSEROID_GYY_SIZE_RATIO);
|
|
gtt_v[4] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gyz, TESSEROID_GYZ_SIZE_RATIO);
|
|
gtt_v[5] = calc_tess_model_adapt(&tess, 1, ops[i].lon, ops[i].lat, ops[i].rad, glqlon, glqlat, glqr, tess_gzz, TESSEROID_GZZ_SIZE_RATIO);
|
|
|
|
// This is in nT, and we reversed the positive direction here to the downward direction
|
|
Hax = M_0*(gtt_v[0]*M_vect_p[0] + gtt_v[1]*M_vect_p[1] + gtt_v[2]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
Hay = M_0*(gtt_v[1]*M_vect_p[0] + gtt_v[3]*M_vect_p[1] + gtt_v[4]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
Za = -1.0*M_0*(gtt_v[2]*M_vect_p[0] + gtt_v[4]*M_vect_p[1] + gtt_v[5]*M_vect_p[2])/(GCTL_G0*tess.density*4*GCTL_Pi);
|
|
|
|
out_obs[i] += sus[j]*(hax_f*Hax + hay_f*Hay + za_f*Za);
|
|
|
|
glq_free(glqlon);
|
|
glq_free(glqlat);
|
|
glq_free(glqr);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
#endif // GCTL_POTENTIAL_MAGTESS
|