/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ // linear conjugate gradient solver library //#include "lcg/solver.h" // GCTL library #include "gctl/core.h" #include "gctl/algorithms.h" #include "gctl/geometry.h" #include "gctl/io.h" #include "gctl/utility.h" #include "gctl/optimization.h" #if defined _WINDOWS || __WIN32__ #include "io.h" // Test for file existence #define F_OK 0 #endif class LKI : public gctl::lcg_solver { public: LKI(){} virtual ~LKI(){} void LCG_Ax(const gctl::array &a, gctl::array &b); void LCG_Mx(const gctl::array &a, gctl::array &b){} void Routine(std::string inname, std::string tarname, std::string outname, std::string col_str, gctl::text_descriptor &desc, int kernel_size, int box_size, double epsilon, std::string variogram_type, std::string variogram_para); void ReadConstrainNodes(std::string filename, gctl::text_descriptor &desc); void WriteTargetNodes(std::string filename, gctl::text_descriptor &desc); void InitTargetNodes(std::string para, gctl::text_descriptor &desc); void CalKernel(); void CalKernel(const gctl::point3dc &tar_node); void set_kernel_size(unsigned int k){MatSize = k+1;} public: gctl::array ConsNodes; gctl::array TargNodes; std::vector LocalNodes; gctl::boxes2d PntBoxes; int ConsSize, MatSize; gctl::matrix Kernel; gctl::array Wgts; gctl::array MidPdt; gctl::array B; //gctl::array GK; //gctl::array DK; //gctl::array ADK; gctl::variogram_model VarModel; gctl::variogram_type_e VarType; gctl::getoption gopt; gctl::_1i_vector col_index; }; void LKI::Routine(std::string inname, std::string tarname, std::string outname, std::string col_str, gctl::text_descriptor &desc, int kernel_size, int box_size, double epsilon, std::string variogram_type, std::string variogram_para) { if (variogram_type == "spherical") VarType = gctl::SPHERICAL; else if (variogram_type == "exponential") VarType = gctl::EXPONENTIAL; else if (variogram_type == "gaussian") VarType = gctl::GAUSSIAN; else if (variogram_type == "wave") VarType = gctl::WAVE; else if (variogram_type == "rational") VarType = gctl::RATIONAL_Q; else if (variogram_type == "circular") VarType = gctl::CIRCULAR; else if (variogram_type == "linear") VarType = gctl::LINEAR; else throw gctl::runtime_error("Invalid variogram function type. From LKI::Routine(...)"); gctl::parse_string_to_value(variogram_para, '/', true, VarModel.nugget, VarModel.sill, VarModel.range); if (!VarModel.valid()) throw gctl::runtime_error("Invalid variogram parameters. From LKI::Routine(...)"); gctl::parse_string_to_vector(col_str, ',', col_index); if (col_index.size() < 3) { throw gctl::runtime_error("Invalid column index. From LKI::Routine(...)"); } ReadConstrainNodes(inname, desc); InitTargetNodes(tarname, desc); unsigned int k_size = kernel_size; if (k_size <= 1) { throw gctl::runtime_error("Invalid local size. From LBSI::Routine(...)"); } if (k_size >= ConsNodes.size()) { GCTL_ShowWhatError("The local size is equal to or bigger than the input node's size. Reduced to the global algorithm.", GCTL_WARNING_ERROR, 0, 0, 0); ConsSize = ConsNodes.size(); MatSize = ConsSize + 1; Kernel.resize(MatSize, MatSize); Wgts.resize(MatSize); B.resize(MatSize); CalKernel(); gctl::lu lu_k(Kernel); lu_k.decompose(); double dist, sum; for (int i = 0; i < TargNodes.size(); ++i) { for (int j = 0; j < ConsSize; ++j) { dist = sqrt((ConsNodes[j].x - TargNodes[i].x)*(ConsNodes[j].x - TargNodes[i].x) + (ConsNodes[j].y - TargNodes[i].y)*(ConsNodes[j].y - TargNodes[i].y)); B[j] = variogram(dist, VarModel, VarType); } B[ConsSize] = 1.0; lu_k.solve(B, Wgts); sum = 0.0; for (int j = 0; j < ConsSize; ++j) { sum += ConsNodes[j].z*Wgts[j]; } TargNodes[i].z = sum; } WriteTargetNodes(outname, desc); return; } set_kernel_size(k_size); LocalNodes.resize(MatSize-1); Kernel.resize(MatSize, MatSize); Wgts.resize(MatSize); MidPdt.resize(MatSize); B.resize(MatSize); //GK.resize(MatSize); //DK.resize(MatSize); //ADK.resize(MatSize); gctl::lcg_para my_para = default_lcg_para(); //my_para.max_iterations = 1000; my_para.epsilon = epsilon; set_lcg_para(my_para); gctl::array xs(ConsNodes.size()); gctl::array ys(ConsNodes.size()); for (int i = 0; i < ConsNodes.size(); ++i) { xs[i] = ConsNodes[i].x; ys[i] = ConsNodes[i].y; } PntBoxes.init(xs, ys, ConsNodes, box_size, box_size); double dist, sum; gctl::progress_bar bar(TargNodes.size()); for (int i = 0; i < TargNodes.size(); ++i) { bar.progressed(i); Kernel.assign_all(0.0); Wgts.assign(0.0); CalKernel(TargNodes[i]); // run the inversion process in factory mode //lcg(_AxProduct, nullptr, Wgts.get(), B.get(), MatSize, &my_para, this, GK.get(), DK.get(), ADK.get()); lcg(Wgts, B); sum = 0.0; for (int j = 0; j < MatSize-1; ++j) { sum += LocalNodes[j]->z*Wgts[j]; } TargNodes[i].z = sum; } WriteTargetNodes(outname, desc); return; } void LKI::ReadConstrainNodes(std::string filename, gctl::text_descriptor &desc) { //read_text2array(filename, ConsNodes); gctl::_2d_vector table_data; desc.file_name_ = filename; gctl::read_text2vector2d(desc, table_data); if (table_data.size() <= 1) { throw gctl::runtime_error("Not enough constraint points. From LBSI::ReadConstrainNodes(...)"); } ConsNodes.resize(table_data.size()); for (int i = 0; i < table_data.size(); ++i) { ConsNodes[i].x = table_data[i][col_index[0]]; ConsNodes[i].y = table_data[i][col_index[1]]; ConsNodes[i].z = table_data[i][col_index[2]]; } gctl::destroy_vector(table_data); return; } void LKI::WriteTargetNodes(std::string filename, gctl::text_descriptor &desc) { desc.file_name_ = filename; save_array2text(desc, TargNodes); return; } void LKI::InitTargetNodes(std::string para, gctl::text_descriptor &desc) { // try to use the para as a file name if (access(para.c_str(), F_OK) != -1) { desc.file_name_ = para; std::vector tmp_vec; gctl::read_text2vector(desc, tmp_vec); TargNodes.resize(tmp_vec.size()); for (int i = 0; i < tmp_vec.size(); ++i) { TargNodes[i].x = tmp_vec[i].x; TargNodes[i].y = tmp_vec[i].y; TargNodes[i].z = 0.0; } gctl::destroy_vector(tmp_vec); return; } double dx, dy, xmin, xmax, ymin, ymax, ele = 0.0; gctl::parse_string_to_value(para, '/', true, xmin, dx, xmax, ymin, dy, ymax); gctl::grid_points_2d(TargNodes, xmin, xmax, ymin, ymax, dx, dy, ele); return; } void LKI::CalKernel() { // 计算出所有成对的协方差函数值 成对的 double dist; for (int i = 0; i < ConsSize; ++i) { Kernel[i][i] = variogram(0.0, VarModel, VarType); for (int j = i+1; j < ConsSize; ++j) { dist = sqrt((ConsNodes[i].x - ConsNodes[j].x)*(ConsNodes[i].x - ConsNodes[j].x) + (ConsNodes[i].y - ConsNodes[j].y)*(ConsNodes[i].y - ConsNodes[j].y)); Kernel[i][j] = Kernel[j][i] = variogram(dist, VarModel, VarType); } } // 最后一行系数全为1 for (int i = 0; i < ConsSize; ++i) { Kernel[ConsSize][i] = Kernel[i][ConsSize] = 1.0; } Kernel[ConsSize][ConsSize] = 0.0; return; } void LKI::CalKernel(const gctl::point3dc &tar_node) { // 找出距离tar_node最近的一组控制点 PntBoxes.get_by_number(tar_node.x, tar_node.y, MatSize-1, LocalNodes); // 计算出所有成对的格林函数值 double dist; for (int j = 0; j < MatSize-1; ++j) { Kernel[j][j] = variogram(0.0, VarModel, VarType); for (int k = j+1; k < MatSize-1; ++k) { dist = sqrt((LocalNodes[j]->x - LocalNodes[k]->x)*(LocalNodes[j]->x - LocalNodes[k]->x) + (LocalNodes[j]->y - LocalNodes[k]->y)*(LocalNodes[j]->y - LocalNodes[k]->y)); Kernel[j][k] = Kernel[k][j] = variogram(dist, VarModel, VarType); } } // 最后一行系数全为1 for (int i = 0; i < MatSize-1; ++i) { Kernel[MatSize-1][i] = Kernel[i][MatSize-1] = 1.0; } Kernel[MatSize-1][MatSize-1] = 0.0; for (int j = 0; j < MatSize-1; ++j) { dist = sqrt((LocalNodes[j]->x - tar_node.x)*(LocalNodes[j]->x - tar_node.x) + (LocalNodes[j]->y - tar_node.y)*(LocalNodes[j]->y - tar_node.y)); MidPdt[j] = variogram(dist, VarModel, VarType); } MidPdt[MatSize-1] = 1.0; for (int i = 0; i < MatSize; ++i) { B[i] = 0; for (int j = 0; j < MatSize; ++j) { B[i] += Kernel[j][i] * MidPdt[j]; } } return; } void LKI::LCG_Ax(const gctl::array &a, gctl::array &b) { for (int i = 0; i < MatSize; ++i) { MidPdt[i] = 0; for (int j = 0; j < MatSize; ++j) { MidPdt[i] += a[j] * Kernel[i][j]; } } for (int i = 0; i < MatSize; ++i) { b[i] = 0; for (int j = 0; j < MatSize; ++j) { b[i] += MidPdt[j] * Kernel[j][i]; } } return; }