/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ // linear conjugate gradient solver library //#include "lcg/solver.h" // GCTL library #include "gctl/core.h" #include "gctl/poly.h" #include "gctl/io.h" #include "gctl/utility.h" #include "gctl/math/boxsort2d.h" #include "gctl/optimization.h" #if defined _WINDOWS || __WIN32__ #include "io.h" // Test for file existence #define F_OK 0 #endif using namespace gctl; struct data_point { point2dc loc; std::vector vals; }; class LBSI : public gctl::lcg_solver { public: LBSI(){} virtual ~LBSI(){} virtual void LCG_Ax(const array &a, array &b); virtual void LCG_Mx(const array &a, array &b){} void Routine(std::string in_name, std::string tar_name, std::string out_name, std::string col_str, gctl::text_descriptor &desc, unsigned int kernel_size, unsigned int box_size, double epsilon); void ReadConstrainNodes(std::string filename, gctl::text_descriptor &desc); void WriteTargetNodes(std::string filename, const gctl::text_descriptor &desc); void InitTargetNodes(std::string para, gctl::text_descriptor &desc); void CalKernel(); void CalKernel(const data_point &tar_node); void UpdateTarVec(size_t idx, bool if_global = true); void set_kernel_size(unsigned int k){MatSize = k;} public: array ConsNodes; array TargNodes; std::vector LocalNodes; boxes2d PntBoxes; double Xmin, Xmax, Ymin, Ymax; // 对输入数据进行归一化处理 size_t MatSize, ValSize, MaxCol; matrix Kernel; array Wgts; array MidPdt; array B; //array GK; //array DK; //array ADK; gctl::_1i_vector col_index; }; void LBSI::Routine(std::string in_name, std::string tar_name, std::string out_name, std::string col_str, gctl::text_descriptor &desc, unsigned int kernel_size, unsigned int box_size, double epsilon) { gctl::parse_string_to_vector(col_str, ',', col_index); if (col_index.size() < 3) { throw gctl::runtime_error("Invalid column index. From LBSI::Routine(...)"); } MaxCol = 0; for (size_t i = 0; i < col_index.size(); i++) { if (MaxCol < col_index[i]) MaxCol = col_index[i]; } ReadConstrainNodes(in_name, desc); InitTargetNodes(tar_name, desc); unsigned int k_size = kernel_size; if (k_size <= 1) { throw gctl::runtime_error("Invalid local size. From LBSI::Routine(...)"); } // Throw errors only set_lcg_message(LCG_THROW); if (k_size >= ConsNodes.size()) { GCTL_ShowWhatError("The local size is equal to or bigger than the input node's size. Reduced to the global algorithm.", GCTL_WARNING_ERROR, 0, 0, 0); k_size = ConsNodes.size(); set_kernel_size(k_size); Kernel.resize(MatSize, MatSize); Wgts.resize(MatSize); MidPdt.resize(MatSize); B.resize(MatSize); //GK.resize(MatSize); //DK.resize(MatSize); //ADK.resize(MatSize); lcg_para my_para = default_lcg_para(); //my_para.max_iterations = 1000; my_para.epsilon = epsilon; set_lcg_para(my_para); CalKernel(); for (size_t s = 0; s < ValSize; s++) { UpdateTarVec(s, true); Wgts.assign(0.0); // run the inversion process in factory mode //lcg(_AxProduct, nullptr, Wgts.get(), B.get(), MatSize, &my_para, this, GK.get(), DK.get(), ADK.get()); lcg(Wgts, B); double dist, sum; for (int i = 0; i < TargNodes.size(); ++i) { sum = 0.0; for (int j = 0; j < MatSize; ++j) { dist = sqrt((TargNodes[i].loc.x - ConsNodes[j].loc.x)*(TargNodes[i].loc.x - ConsNodes[j].loc.x) + (TargNodes[i].loc.y - ConsNodes[j].loc.y)*(TargNodes[i].loc.y - ConsNodes[j].loc.y)); if (dist >= GCTL_ZERO) { sum += dist*dist*(log(dist)-1.0)*Wgts[j]; } } TargNodes[i].vals[s] = sum; } } WriteTargetNodes(out_name, desc); return; } set_kernel_size(k_size); LocalNodes.resize(MatSize); Kernel.resize(MatSize, MatSize); Wgts.resize(MatSize); MidPdt.resize(MatSize); B.resize(MatSize); //GK.resize(MatSize); //DK.resize(MatSize); //ADK.resize(MatSize); lcg_para my_para = default_lcg_para(); //my_para.max_iterations = 1000; my_para.epsilon = epsilon; set_lcg_para(my_para); gctl::array xs(ConsNodes.size()); gctl::array ys(ConsNodes.size()); for (int i = 0; i < ConsNodes.size(); ++i) { xs[i] = ConsNodes[i].loc.x; ys[i] = ConsNodes[i].loc.y; } PntBoxes.init(xs, ys, ConsNodes, box_size, box_size); double dist, sum; progress_bar bar(TargNodes.size()); for (int i = 0; i < TargNodes.size(); ++i) { bar.progressed(i); Kernel.assign_all(0.0); CalKernel(TargNodes[i]); for (size_t s = 0; s < ValSize; s++) { UpdateTarVec(s, false); Wgts.assign(0.0); // run the inversion process in factory mode //lcg(_AxProduct, nullptr, Wgts.get(), B.get(), MatSize, &my_para, this, GK.get(), DK.get(), ADK.get()); lcg(Wgts, B); sum = 0.0; for (int j = 0; j < MatSize; ++j) { dist = sqrt((TargNodes[i].loc.x - LocalNodes[j]->loc.x)*(TargNodes[i].loc.x - LocalNodes[j]->loc.x) + (TargNodes[i].loc.y - LocalNodes[j]->loc.y)*(TargNodes[i].loc.y - LocalNodes[j]->loc.y)); if (dist >= GCTL_ZERO) { sum += dist*dist*(log(dist)-1.0)*Wgts[j]; } } TargNodes[i].vals[s] = sum; } } WriteTargetNodes(out_name, desc); return; } void LBSI::ReadConstrainNodes(std::string filename, gctl::text_descriptor &desc) { desc.file_name_ = filename; gctl::_2d_vector table_data; gctl::read_text2vector2d(desc, table_data); if (table_data.size() <= 1) { throw gctl::runtime_error("Not enough constraint points. From LBSI::ReadConstrainNodes(...)"); } if (table_data[0].size() - 1 < MaxCol) { throw gctl::runtime_error("Invalid constraint point format. From LBSI::ReadConstrainNodes(...)"); } Xmin = Ymin = 1e+30; Xmax = Ymax = -1e+30; ValSize = col_index.size() - 2; ConsNodes.resize(table_data.size()); for (size_t i = 0; i < table_data.size(); ++i) { ConsNodes[i].loc.x = table_data[i][col_index[0]]; ConsNodes[i].loc.y = table_data[i][col_index[1]]; Xmin = std::min(Xmin, ConsNodes[i].loc.x); Xmax = std::max(Xmax, ConsNodes[i].loc.x); Ymin = std::min(Ymin, ConsNodes[i].loc.y); Ymax = std::max(Ymax, ConsNodes[i].loc.y); for (size_t j = 0; j < ValSize; j++) { ConsNodes[i].vals.push_back(table_data[i][col_index[2+j]]); } } for (size_t i = 0; i < ConsNodes.size(); i++) { ConsNodes[i].loc.x = (ConsNodes[i].loc.x - Xmin)/(Xmax - Xmin); ConsNodes[i].loc.y = (ConsNodes[i].loc.y - Ymin)/(Ymax - Ymin); } destroy_vector(table_data); return; } void LBSI::WriteTargetNodes(std::string filename, const gctl::text_descriptor &desc) { std::ofstream outfile; gctl::open_outfile(outfile, filename, ".txt"); for (size_t i = 0; i < desc.head_num_; i++) { outfile << desc.head_strs_[i] << "\n"; } for (size_t i = 0; i < TargNodes.size(); i++) { TargNodes[i].loc.x = TargNodes[i].loc.x*(Xmax - Xmin) + Xmin; TargNodes[i].loc.y = TargNodes[i].loc.y*(Ymax - Ymin) + Ymin; outfile << TargNodes[i].loc.x << " " << TargNodes[i].loc.y << " " << std::setprecision(12); for (size_t j = 0; j < ValSize; j++) { outfile << TargNodes[i].vals[j] << " "; } outfile << std::endl; } outfile.close(); return; } void LBSI::InitTargetNodes(std::string para, gctl::text_descriptor &desc) { // try to use the para as a file name if (access(para.c_str(), F_OK) != -1) { desc.file_name_ = para; std::vector tmp_vec; read_text2vector(desc, tmp_vec); TargNodes.resize(tmp_vec.size()); for (size_t i = 0; i < tmp_vec.size(); ++i) { TargNodes[i].loc.x = tmp_vec[i].x; TargNodes[i].loc.y = tmp_vec[i].y; TargNodes[i].loc.x = (TargNodes[i].loc.x - Xmin)/(Xmax - Xmin); TargNodes[i].loc.y = (TargNodes[i].loc.y - Ymin)/(Ymax - Ymin); } for (size_t i = 0; i < TargNodes.size(); i++) { TargNodes[i].vals.resize(ValSize); } destroy_vector(tmp_vec); return; } double dx, dy, xmin, xmax, ymin, ymax; gctl::parse_string_to_value(para, '/', true, xmin, dx, xmax, ymin, dy, ymax); size_t M = floor((ymax - ymin)/dy) + 1; size_t N = floor((xmax - xmin)/dx) + 1; TargNodes.resize(M*N); for (size_t j = 0; j < M; j++) { for (size_t i = 0; i < N; i++) { TargNodes[i + j*N].loc.x = xmin + dx*i; TargNodes[i + j*N].loc.y = ymin + dy*j; TargNodes[i + j*N].loc.x = (TargNodes[i + j*N].loc.x - Xmin)/(Xmax - Xmin); TargNodes[i + j*N].loc.y = (TargNodes[i + j*N].loc.y - Ymin)/(Ymax - Ymin); } } for (size_t i = 0; i < TargNodes.size(); i++) { TargNodes[i].vals.resize(ValSize); } return; } void LBSI::CalKernel() { // 计算出所有成对的格林函数值 double dist; for (int j = 0; j < MatSize-1; ++j) { for (int k = j+1; k < MatSize; ++k) { dist = sqrt((ConsNodes[j].loc.x - ConsNodes[k].loc.x)*(ConsNodes[j].loc.x - ConsNodes[k].loc.x) + (ConsNodes[j].loc.y - ConsNodes[k].loc.y)*(ConsNodes[j].loc.y - ConsNodes[k].loc.y)); if (dist >= GCTL_ZERO) { Kernel[j][k] = Kernel[k][j] = dist*dist*(log(dist)-1.0); } } } return; } void LBSI::CalKernel(const data_point &tar_node) { // 找出距离tar_node最近的一组控制点 PntBoxes.get_by_number(tar_node.loc.x, tar_node.loc.y, MatSize, LocalNodes); // 计算出所有成对的格林函数值 double dist; for (int j = 0; j < MatSize-1; ++j) { for (int k = j+1; k < MatSize; ++k) { dist = sqrt((LocalNodes[j]->loc.x - LocalNodes[k]->loc.x)*(LocalNodes[j]->loc.x - LocalNodes[k]->loc.x) + (LocalNodes[j]->loc.y - LocalNodes[k]->loc.y)*(LocalNodes[j]->loc.y - LocalNodes[k]->loc.y)); if (dist >= GCTL_ZERO) { Kernel[j][k] = Kernel[k][j] = dist*dist*(log(dist)-1.0); } } } return; } void LBSI::UpdateTarVec(size_t idx, bool if_global) { if (if_global) { for (int i = 0; i < MatSize; ++i) { B[i] = 0; for (int j = 0; j < MatSize; ++j) { B[i] += Kernel[j][i] * ConsNodes[j].vals[idx]; } } } else { for (int i = 0; i < MatSize; ++i) { B[i] = 0; for (int j = 0; j < MatSize; ++j) { B[i] += Kernel[j][i] * LocalNodes[j]->vals[idx]; } } } return; } void LBSI::LCG_Ax(const array &a, array &b) { for (int i = 0; i < MatSize; ++i) { MidPdt[i] = 0; for (int j = 0; j < MatSize; ++j) { MidPdt[i] += a[j] * Kernel[i][j]; } } for (int i = 0; i < MatSize; ++i) { b[i] = 0; for (int j = 0; j < MatSize; ++j) { b[i] += MidPdt[j] * Kernel[j][i]; } } return; }