#ifndef _FUNC_H #define _FUNC_H #include "sysDefine.h" #include "NALF-SFCM.h" #include "progressBar_imp.h" // 命令规则 n为阶数 m为次数 class sph2xyz { public: sph2xyz(){} ~sph2xyz(){} int readSHC(char*,char*,char*); //读入球谐系数 int initMatrix(char*,char*,char*,char*); //初始化相关的矩阵大小 int initObs(char*,char*,char*); //初始化观测点 如只有范围参数则只初始化经纬度位置 int relocateAltitude(char*); //根据输入文件重新确定计算高程 int outObs(char*); //输出计算结果 如果有文件指定的位置则插值 int calSolution(); //计算球谐结果 同一高程观测值 int calSolution2(char*); //计算不同高程的观测值 private: _2dArray Anm; _2dArray Bnm; _2dArray Pnm; //伴随勒让德函数系数 这个函数只和观测位置的纬度/余纬度相关 同一纬度只需要计算一次 _2dArray mCos; //不同次数cos函数值 这个值只和观测位置的经度相关 行数为不同经度位置 列数为不同次数 矩阵维度即为经度个数*阶次 一般估算在1000*1000级别 _2dArray mSin; //不同次数sin函数值 其他与上同 _2dArray coff_S; //球谐系数sin参数 _2dArray coff_C; //球谐系数cos参数 _2dArray multi_array; //乘子矩阵 sphArray obsPoint; //计算地形是的观测位置 即计算半径值 sphArray outPoint; //输出计算值 double norSum; double GM,R; //球谐系数中重力常数与质量的乘积 单位为SI标准 g 与 m double multi_factor; // 乘子系数 int NN_size; //系数矩阵大小 int lon_size,lat_size; double refr,refR,altitude; double lonmin,lonmax,dlon; double latmin,latmax,dlat; }; //读取球谐参数文件 文件名 起止阶次 列序列 int sph2xyz::readSHC(char* filename,char* para,char* orders) { ifstream infile; if (open_infile(infile,filename)) return -1; int n_start,m_start,n_end,m_end; if (4 != sscanf(para,"%d/%d/%d/%d",&n_start,&m_start,&n_end,&m_end)) { cerr << BOLDRED << "error ==> " << RESET << "wrong parameter: " << para << endl; return -1; } //识别列次序 int order[4]; if (4 != sscanf(orders,"%d,%d,%d,%d",&order[0],&order[1],&order[2],&order[3])) { cerr << BOLDRED << "error ==> " << RESET << "wrong parameter: " << orders << endl; return -1; } //按照最大阶数初始化下半三角矩阵 NN_size = n_end + 1; //对于二维vector来说 对行初始化的时候需要使用resize 而对于列的初始化而言使用reserve效率更高 coff_C.resize(NN_size); coff_S.resize(NN_size); for (int i = 0; i < NN_size; i++) { coff_C[i].resize(i+1,0.0); coff_S[i].resize(i+1,0.0); } int n,m; //行列号 double temp_d,temp_c,temp_s; _1dArray temp_row; temp_row.reserve(100); //出现初始化100个double的空间 这样读文件更快 string temp_str; stringstream temp_ss; while (getline(infile,temp_str)) { if (*(temp_str.begin()) == '#') continue; if (!temp_row.empty()) temp_row.clear(); temp_ss.str(""); temp_ss.clear(); temp_ss << temp_str; while (temp_ss >> temp_d) temp_row.push_back(temp_d); n = int(temp_row[order[0]]); m = int(temp_row[order[1]]); temp_c = temp_row[order[2]]; temp_s = temp_row[order[3]]; if (n >= n_start && n <= n_end && m >= m_start && m <= m_end) { coff_C[n][m] = temp_c; coff_S[n][m] = temp_s; } } infile.close(); return 0; } int sph2xyz::initObs(char* r_para,char* i_para,char* refsys) { //解析参考球 if (!strcmp(refsys,"NULL")) { refr = refR = 0.0; } else if (!strcmp(refsys,"WGS84")) { refr = WGS84_PoleRadius; refR = WGS84_EquatorRadius; } else if (!strcmp(refsys,"EarthRadius")) { refr = EarthRadius; refR = EarthRadius; } else if (!strcmp(refsys,"MoonRadius")) { refr = MoonRadius; refR = MoonRadius; } else if (2 != sscanf(refsys,"%lf/%lf",&refr,&refR)) { cerr << BOLDRED << "error ==> " << RESET << "wrong parameter: " << refsys << endl; return -1; } //解析经纬度范围 按规则网络初始化观测点位置 if (5 != sscanf(r_para,"%lf/%lf/%lf/%lf/%lf",&lonmin,&lonmax,&latmin,&latmax,&altitude)) { if (4 != sscanf(r_para,"%lf/%lf/%lf/%lf",&lonmin,&lonmax,&latmin,&latmax)) { cerr << BOLDRED << "error ==> " << RESET << "wrong parameter: " << r_para << endl; return -1; } else altitude = 0.0; } //解析间隔 if (2 != sscanf(i_para,"%lf/%lf",&dlon,&dlat)) { cerr << BOLDRED << "error ==> " << RESET << "wrong parameter: " << i_para << endl; return -1; } spoint temp_spoint; double lon,lat; lon_size = round((lonmax-lonmin)/dlon) + 1; lat_size = round((latmax-latmin)/dlat) + 1; obsPoint.reserve(lon_size*lat_size); for (int i = 0; i < lat_size; i++) { for (int j = 0; j < lon_size; j++) { lat = latmin + i*dlat; lon = lonmin + j*dlon; temp_spoint.lon = lon; temp_spoint.lat = lat; temp_spoint.ref = refRadius(temp_spoint.lat,refr,refR); temp_spoint.alti = altitude; temp_spoint.rad = temp_spoint.ref + temp_spoint.alti; temp_spoint.val = 0.0; obsPoint.push_back(temp_spoint); } } return 0; } int sph2xyz::relocateAltitude(char* filepara) { char filename[1024]; int orders[3] = {0,1,2}; //默认的读入的数据列为前三列 if(!strcmp(filepara,"NULL")) return 0; //解析文件名中是否含有+d标示 如果有则将+d以前解释为filename 之后为需要读入的数据列 默认为逗号分隔 //否则将filepara赋值为filename if (4 != sscanf(filepara,"%[^+]+d%d,%d,%d",filename,&orders[0],&orders[1],&orders[2])) strcpy(filename,filepara); ifstream infile; if (open_infile(infile,filename)) return -1; int numM,numN,tempM,tempN; string temp_str; stringstream temp_ss; double temp_d,temp_lon,temp_lat,temp_alti; _1dArray temp_row; numM = floor((latmax-latmin)/dlat)+1; numN = floor((lonmax-lonmin)/dlon)+1; while(getline(infile,temp_str)) { if (*(temp_str.begin()) == '#') continue; temp_ss.str(""); temp_ss.clear(); temp_ss << temp_str; if(!temp_row.empty()) temp_row.clear(); while(temp_ss >> temp_d) temp_row.push_back(temp_d); temp_lon = temp_row[orders[0]]; temp_lat = temp_row[orders[1]]; temp_alti = temp_row[orders[2]]; tempM = round((temp_lat-latmin)/dlat); tempN = round((temp_lon-lonmin)/dlon); obsPoint[tempM*numN+tempN].alti = temp_alti; obsPoint[tempM*numN+tempN].rad = obsPoint[tempM*numN+tempN].ref + temp_alti; } infile.close(); return 0; } //初始化矩阵 int sph2xyz::initMatrix(char* type,char* para,char* norType,char* zfile) { //初始化GM与R if (strcmp(para,"NULL")) //如果para不为NULL则识别参数 否则将GM与R初始化为MAX_BDL { if (2 != sscanf(para,"%lf/%lf",&GM,&R)) { cerr << BOLDRED << "error ==> " << RESET << "wrong parameter: " << para << endl; return -1; } } else GM = R = MAX_BDL; //初始化归一化类型 if (!strcmp(norType,"g")) norSum = 4.0*pi; else if (!strcmp(norType,"m")) norSum = 1.0; else { cerr << BOLDRED << "error ==> " << RESET << "wrong parameter: " << norType << endl; return -1; } //初始化伴随勒让德函数矩阵 Pnm.resize(NN_size); for (int i = 0; i < NN_size; i++) Pnm.at(i).resize(i+1,0.0); //初始化sin和cos矩阵 mCos.resize(lon_size); mSin.resize(lon_size); for (int i = 0; i < lon_size; i++) { mCos[i].reserve(NN_size); mSin[i].reserve(NN_size); } //计算mCos和mSin的值 int i,j; double lon; #pragma omp parallel for private(i,j,lon) schedule(guided) for (i = 0; i < lon_size; i++) { lon = lonmin + i*dlon; for (j = 0; j < NN_size; j++) { mCos[i].push_back(cos(j*lon*pi/180.0)); mSin[i].push_back(sin(j*lon*pi/180.0)); } } //计算勒让德函数系数 Anm = get_a_nm_array(NN_size); Bnm = get_b_nm_array(NN_size); //计算乘子参数 if(!strcmp(type,"t")) //topography multi_factor = 1.0; else if (!strcmp(type,"d") || !strcmp(type,"g")) //gravity disturbance multi_factor = 1e+5*GM/(R*R); else if (!strcmp(type,"r")) //gravity disturbance multi_factor = 1e+9*GM/(R*R); else if (!strcmp(type,"p")) multi_factor = 1e+5*GM/R; else { cerr << BOLDRED << "error ==> " << RESET << "unknown calculation type of " << type << endl; return -1; } //初始化乘子矩阵 multi_array.resize(lat_size); for (i = 0; i < lat_size; i++) { multi_array[i].resize(NN_size,1.0); //初始化乘子矩阵为1 适用于地形等直接计算的类型 } //如果计算高程不在同一高程 则不能使用multi_array 同时应该使用calSolution2()函数 if (strcmp(zfile,"NULL")) return 0; //如果计算类型不是地形等直接计算类型则需要检验-g选项是否已经设置 if (strcmp(type,"t")) { if (GM == MAX_BDL || R == MAX_BDL) { cerr << BOLDRED << "error ==> " << RESET << "-g option must be set for gravitational calculation" << endl; return -1; } } //根据不同类型计算乘子参数和乘子矩阵 if (!strcmp(type,"d")) //gravity disturbance { #pragma omp parallel for private(i,j) shared(R,lon_size) schedule(guided) for (i = 0; i < lat_size; i++) { for (j = 0; j < NN_size; j++) { multi_array[i][j] = pow(R/obsPoint[i*lon_size].rad,j+2)*(j+1); } } } else if (!strcmp(type,"r")) //gravity gradient { #pragma omp parallel for private(i,j) shared(R,lon_size) schedule(guided) for (i = 0; i < lat_size; i++) { for (j = 0; j < NN_size; j++) { multi_array[i][j] = pow(R/obsPoint[i*lon_size].rad,j+2)*(j+1)*(j+2)/obsPoint[i*lon_size].rad; } } } else if (!strcmp(type,"g")) //gravity anomaly { #pragma omp parallel for private(i,j) shared(R,lon_size) schedule(guided) for (i = 0; i < lat_size; i++) { for (j = 0; j < NN_size; j++) { multi_array[i][j] = pow(R/obsPoint[i*lon_size].rad,j+2)*(j-1); } } } else if (!strcmp(type,"p")) //geo-potential { #pragma omp parallel for private(i,j) shared(R,lon_size) schedule(guided) for (i = 0; i < lat_size; i++) { for (j = 0; j < NN_size; j++) { multi_array[i][j] = pow(R/obsPoint[i*lon_size].rad,j+1); } } } return 0; } int sph2xyz::outObs(char* filename) { if (!strcmp(filename,"NULL")) //没有输入文件 直接输出规则网计算结果 { cout << "# NaN value = 1e+30" << endl; cout << "# lon(deg) lat(deg) reference-radius(m) altitude(m) topography(m)|gravitational-field(mGal)" << endl; for (int i = 0; i < obsPoint.size(); i++) { obsPoint[i].info(); } } else { ifstream infile; if(open_infile(infile,filename)) return -1; spoint temp_sp; string temp_str; stringstream temp_ss; while (getline(infile,temp_str)) { if(*(temp_str.begin()) == '#') continue; temp_ss.str(""); temp_ss.clear(); temp_ss << temp_str; temp_ss >> temp_sp.lon >> temp_sp.lat; temp_sp.ref = refRadius(temp_sp.lat,refr,refR); temp_sp.alti = altitude; outPoint.push_back(temp_sp); } infile.close(); int numM,numN,tempM,tempN; double lon1,lon2,lat1,lat2; numM = floor((latmax-latmin)/dlat)+1; numN = floor((lonmax-lonmin)/dlon)+1; for (int i = 0; i < outPoint.size(); i++) { tempM = floor((outPoint[i].lat-latmin)/dlat); tempN = floor((outPoint[i].lon-lonmin)/dlon); if (tempM == (numM-1)) tempM -= 1; if (tempN == (numN-1)) tempN -= 1; if (tempM >= 0 && tempN >= 0 && tempM <= numM-2 && tempN <= numN-2) { lon1 = lonmin+tempN*dlon; lon2 = lonmin+(tempN+1)*dlon; lat1 = latmin+tempM*dlat; lat2 = latmin+(tempM+1)*dlat; outPoint[i].val = SphBiInterp_deg(lat1,lat2,lon1,lon2, outPoint[i].lat,outPoint[i].lon, obsPoint[tempM*numN+tempN].val, obsPoint[tempM*numN+tempN+1].val, obsPoint[(tempM+1)*numN+tempN].val, obsPoint[(tempM+1)*numN+tempN+1].val); } } cout << "# NaN value = 1e+30" << endl; cout << "# lon(deg) lat(deg) reference-radius(m) altitude(m) topography(m)|gravitational-field(mGal)" << endl; for (int i = 0; i < outPoint.size(); i++) { outPoint[i].info(); } } return 0; } int sph2xyz::calSolution() { //计算 int i,j,n,m; double temp_d,lat; ProgressBar *bar = new ProgressBar(lat_size,"Process"); for (i = 0; i < lat_size; i++) { bar->Progressed(i); lat = latmin + dlat*i; //计算伴随勒让德函数 对于同一个纬度只需要计算一次 NALF_SFCM3(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum); //这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行 //一种并行方案更快一些 #pragma omp parallel for private(j,n,m,temp_d) shared(i,multi_factor) schedule(guided) for (j = 0; j < lon_size; j++) { temp_d = 0; for (n = 0; n < NN_size; n++) { for (m = 0; m < n+1; m++) { temp_d += multi_array[i][n]*Pnm[n][m]*(coff_C[n][m]*mCos[j][m]+coff_S[n][m]*mSin[j][m]); } } obsPoint[i*lon_size+j].val = multi_factor*temp_d; } } return 0; } int sph2xyz::calSolution2(char* type) { //计算 int i,j,n,m; double temp_d,lat; ProgressBar *bar = new ProgressBar(lat_size,"Process"); if (!strcmp(type,"d")) { for (i = 0; i < lat_size; i++) { bar->Progressed(i); lat = latmin + dlat*i; //计算伴随勒让德函数 对于同一个纬度只需要计算一次 NALF_SFCM3(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum); //这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行 //一种并行方案更快一些 #pragma omp parallel for private(j,n,m,temp_d) shared(i,multi_factor,lon_size) schedule(guided) for (j = 0; j < lon_size; j++) { temp_d = 0; for (n = 0; n < NN_size; n++) { for (m = 0; m < n+1; m++) { //pow(R/obsPoint[i*lon_size+j].rad,n+2)*(n+1) temp_d += pow(R/obsPoint[i*lon_size+j].rad,n+2)*(n+1)*Pnm[n][m]*(coff_C[n][m]*mCos[j][m]+coff_S[n][m]*mSin[j][m]); } } obsPoint[i*lon_size+j].val = multi_factor*temp_d; } } } else if (!strcmp(type,"g")) { for (i = 0; i < lat_size; i++) { bar->Progressed(i); lat = latmin + dlat*i; //计算伴随勒让德函数 对于同一个纬度只需要计算一次 NALF_SFCM3(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum); //这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行 //一种并行方案更快一些 #pragma omp parallel for private(j,n,m,temp_d) shared(i,multi_factor,lon_size) schedule(guided) for (j = 0; j < lon_size; j++) { temp_d = 0; for (n = 0; n < NN_size; n++) { for (m = 0; m < n+1; m++) { //pow(R/obsPoint[i*lon_size+j].rad,n+2)*(n-1) temp_d += pow(R/obsPoint[i*lon_size+j].rad,n+2)*(n-1)*Pnm[n][m]*(coff_C[n][m]*mCos[j][m]+coff_S[n][m]*mSin[j][m]); } } obsPoint[i*lon_size+j].val = multi_factor*temp_d; } } } else if (!strcmp(type,"p")) { for (i = 0; i < lat_size; i++) { bar->Progressed(i); lat = latmin + dlat*i; //计算伴随勒让德函数 对于同一个纬度只需要计算一次 NALF_SFCM3(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum); //这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行 //一种并行方案更快一些 #pragma omp parallel for private(j,n,m,temp_d) shared(i,multi_factor,lon_size) schedule(guided) for (j = 0; j < lon_size; j++) { temp_d = 0; for (n = 0; n < NN_size; n++) { for (m = 0; m < n+1; m++) { //pow(R/obsPoint[i*lon_size+j].rad,n+1) temp_d += pow(R/obsPoint[i*lon_size+j].rad,n+1)*Pnm[n][m]*(coff_C[n][m]*mCos[j][m]+coff_S[n][m]*mSin[j][m]); } } obsPoint[i*lon_size+j].val = multi_factor*temp_d; } } } return 0; } #endif