gctl_toolkits/lki/lki.h
2025-02-11 10:43:28 +08:00

361 lines
10 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
// linear conjugate gradient solver library
//#include "lcg/solver.h"
// GCTL library
#include "gctl/core.h"
#include "gctl/algorithms.h"
#include "gctl/geometry.h"
#include "gctl/io.h"
#include "gctl/utility.h"
#include "gctl/optimization.h"
#if defined _WINDOWS || __WIN32__
#include "io.h"
// Test for file existence
#define F_OK 0
#endif
class LKI : public gctl::lcg_solver
{
public:
LKI(){}
virtual ~LKI(){}
void LCG_Ax(const gctl::array<double> &a, gctl::array<double> &b);
void LCG_Mx(const gctl::array<double> &a, gctl::array<double> &b){}
void Routine(std::string inname, std::string tarname, std::string outname, std::string col_str,
gctl::text_descriptor &desc, int kernel_size, int box_size, double epsilon,
std::string variogram_type, std::string variogram_para);
void ReadConstrainNodes(std::string filename, gctl::text_descriptor &desc);
void WriteTargetNodes(std::string filename, gctl::text_descriptor &desc);
void InitTargetNodes(std::string para, gctl::text_descriptor &desc);
void CalKernel();
void CalKernel(const gctl::point3dc &tar_node);
void set_kernel_size(unsigned int k){MatSize = k+1;}
public:
gctl::array<gctl::point3dc> ConsNodes;
gctl::array<gctl::point3dc> TargNodes;
std::vector<gctl::point3dc*> LocalNodes;
gctl::boxes2d<gctl::point3dc> PntBoxes;
int ConsSize, MatSize;
gctl::matrix<double> Kernel;
gctl::array<double> Wgts;
gctl::array<double> MidPdt;
gctl::array<double> B;
//gctl::array<double> GK;
//gctl::array<double> DK;
//gctl::array<double> ADK;
gctl::variogram_model VarModel;
gctl::variogram_type_e VarType;
gctl::getoption gopt;
gctl::_1i_vector col_index;
};
void LKI::Routine(std::string inname, std::string tarname, std::string outname, std::string col_str, gctl::text_descriptor &desc,
int kernel_size, int box_size, double epsilon, std::string variogram_type, std::string variogram_para)
{
if (variogram_type == "spherical") VarType = gctl::SPHERICAL;
else if (variogram_type == "exponential") VarType = gctl::EXPONENTIAL;
else if (variogram_type == "gaussian") VarType = gctl::GAUSSIAN;
else if (variogram_type == "wave") VarType = gctl::WAVE;
else if (variogram_type == "rational") VarType = gctl::RATIONAL_Q;
else if (variogram_type == "circular") VarType = gctl::CIRCULAR;
else if (variogram_type == "linear") VarType = gctl::LINEAR;
else throw gctl::runtime_error("Invalid variogram function type. From LKI::Routine(...)");
gctl::parse_string_to_value(variogram_para, '/', true, VarModel.nugget, VarModel.sill, VarModel.range);
if (!VarModel.valid()) throw gctl::runtime_error("Invalid variogram parameters. From LKI::Routine(...)");
gctl::parse_string_to_vector(col_str, ',', col_index);
if (col_index.size() < 3)
{
throw gctl::runtime_error("Invalid column index. From LKI::Routine(...)");
}
ReadConstrainNodes(inname, desc);
InitTargetNodes(tarname, desc);
unsigned int k_size = kernel_size;
if (k_size <= 1)
{
throw gctl::runtime_error("Invalid local size. From LBSI::Routine(...)");
}
if (k_size >= ConsNodes.size())
{
GCTL_ShowWhatError("The local size is equal to or bigger than the input node's size. Reduced to the global algorithm.", GCTL_WARNING_ERROR, 0, 0, 0);
ConsSize = ConsNodes.size();
MatSize = ConsSize + 1;
Kernel.resize(MatSize, MatSize);
Wgts.resize(MatSize);
B.resize(MatSize);
CalKernel();
gctl::lu lu_k(Kernel);
lu_k.decompose();
double dist, sum;
for (int i = 0; i < TargNodes.size(); ++i)
{
for (int j = 0; j < ConsSize; ++j)
{
dist = sqrt((ConsNodes[j].x - TargNodes[i].x)*(ConsNodes[j].x - TargNodes[i].x)
+ (ConsNodes[j].y - TargNodes[i].y)*(ConsNodes[j].y - TargNodes[i].y));
B[j] = variogram(dist, VarModel, VarType);
}
B[ConsSize] = 1.0;
lu_k.solve(B, Wgts);
sum = 0.0;
for (int j = 0; j < ConsSize; ++j)
{
sum += ConsNodes[j].z*Wgts[j];
}
TargNodes[i].z = sum;
}
WriteTargetNodes(outname, desc);
return;
}
set_kernel_size(k_size);
LocalNodes.resize(MatSize-1);
Kernel.resize(MatSize, MatSize);
Wgts.resize(MatSize);
MidPdt.resize(MatSize);
B.resize(MatSize);
//GK.resize(MatSize);
//DK.resize(MatSize);
//ADK.resize(MatSize);
gctl::lcg_para my_para = default_lcg_para();
//my_para.max_iterations = 1000;
my_para.epsilon = epsilon;
set_lcg_para(my_para);
gctl::array<double> xs(ConsNodes.size());
gctl::array<double> ys(ConsNodes.size());
for (int i = 0; i < ConsNodes.size(); ++i)
{
xs[i] = ConsNodes[i].x;
ys[i] = ConsNodes[i].y;
}
PntBoxes.init(xs, ys, ConsNodes, box_size, box_size);
double dist, sum;
gctl::progress_bar bar(TargNodes.size());
for (int i = 0; i < TargNodes.size(); ++i)
{
bar.progressed(i);
Kernel.assign_all(0.0);
Wgts.assign(0.0);
CalKernel(TargNodes[i]);
// run the inversion process in factory mode
//lcg(_AxProduct, nullptr, Wgts.get(), B.get(), MatSize, &my_para, this, GK.get(), DK.get(), ADK.get());
lcg(Wgts, B);
sum = 0.0;
for (int j = 0; j < MatSize-1; ++j)
{
sum += LocalNodes[j]->z*Wgts[j];
}
TargNodes[i].z = sum;
}
WriteTargetNodes(outname, desc);
return;
}
void LKI::ReadConstrainNodes(std::string filename, gctl::text_descriptor &desc)
{
//read_text2array(filename, ConsNodes);
gctl::_2d_vector table_data;
desc.file_name_ = filename;
gctl::read_text2vector2d(desc, table_data);
if (table_data.size() <= 1)
{
throw gctl::runtime_error("Not enough constraint points. From LBSI::ReadConstrainNodes(...)");
}
ConsNodes.resize(table_data.size());
for (int i = 0; i < table_data.size(); ++i)
{
ConsNodes[i].x = table_data[i][col_index[0]];
ConsNodes[i].y = table_data[i][col_index[1]];
ConsNodes[i].z = table_data[i][col_index[2]];
}
gctl::destroy_vector(table_data);
return;
}
void LKI::WriteTargetNodes(std::string filename, gctl::text_descriptor &desc)
{
desc.file_name_ = filename;
save_array2text(desc, TargNodes);
return;
}
void LKI::InitTargetNodes(std::string para, gctl::text_descriptor &desc)
{
// try to use the para as a file name
if (access(para.c_str(), F_OK) != -1)
{
desc.file_name_ = para;
std::vector<gctl::point2dc> tmp_vec;
gctl::read_text2vector(desc, tmp_vec);
TargNodes.resize(tmp_vec.size());
for (int i = 0; i < tmp_vec.size(); ++i)
{
TargNodes[i].x = tmp_vec[i].x;
TargNodes[i].y = tmp_vec[i].y;
TargNodes[i].z = 0.0;
}
gctl::destroy_vector(tmp_vec);
return;
}
double dx, dy, xmin, xmax, ymin, ymax, ele = 0.0;
gctl::parse_string_to_value(para, '/', true, xmin, dx, xmax, ymin, dy, ymax);
gctl::grid_points_2d(TargNodes, xmin, xmax, ymin, ymax, dx, dy, ele);
return;
}
void LKI::CalKernel()
{
// 计算出所有成对的协方差函数值 成对的
double dist;
for (int i = 0; i < ConsSize; ++i)
{
Kernel[i][i] = variogram(0.0, VarModel, VarType);
for (int j = i+1; j < ConsSize; ++j)
{
dist = sqrt((ConsNodes[i].x - ConsNodes[j].x)*(ConsNodes[i].x - ConsNodes[j].x)
+ (ConsNodes[i].y - ConsNodes[j].y)*(ConsNodes[i].y - ConsNodes[j].y));
Kernel[i][j] = Kernel[j][i] = variogram(dist, VarModel, VarType);
}
}
// 最后一行系数全为1
for (int i = 0; i < ConsSize; ++i)
{
Kernel[ConsSize][i] = Kernel[i][ConsSize] = 1.0;
}
Kernel[ConsSize][ConsSize] = 0.0;
return;
}
void LKI::CalKernel(const gctl::point3dc &tar_node)
{
// 找出距离tar_node最近的一组控制点
PntBoxes.get_by_number(tar_node.x, tar_node.y, MatSize-1, LocalNodes);
// 计算出所有成对的格林函数值
double dist;
for (int j = 0; j < MatSize-1; ++j)
{
Kernel[j][j] = variogram(0.0, VarModel, VarType);
for (int k = j+1; k < MatSize-1; ++k)
{
dist = sqrt((LocalNodes[j]->x - LocalNodes[k]->x)*(LocalNodes[j]->x - LocalNodes[k]->x)
+ (LocalNodes[j]->y - LocalNodes[k]->y)*(LocalNodes[j]->y - LocalNodes[k]->y));
Kernel[j][k] = Kernel[k][j] = variogram(dist, VarModel, VarType);
}
}
// 最后一行系数全为1
for (int i = 0; i < MatSize-1; ++i)
{
Kernel[MatSize-1][i] = Kernel[i][MatSize-1] = 1.0;
}
Kernel[MatSize-1][MatSize-1] = 0.0;
for (int j = 0; j < MatSize-1; ++j)
{
dist = sqrt((LocalNodes[j]->x - tar_node.x)*(LocalNodes[j]->x - tar_node.x)
+ (LocalNodes[j]->y - tar_node.y)*(LocalNodes[j]->y - tar_node.y));
MidPdt[j] = variogram(dist, VarModel, VarType);
}
MidPdt[MatSize-1] = 1.0;
for (int i = 0; i < MatSize; ++i)
{
B[i] = 0;
for (int j = 0; j < MatSize; ++j)
{
B[i] += Kernel[j][i] * MidPdt[j];
}
}
return;
}
void LKI::LCG_Ax(const gctl::array<double> &a, gctl::array<double> &b)
{
for (int i = 0; i < MatSize; ++i)
{
MidPdt[i] = 0;
for (int j = 0; j < MatSize; ++j)
{
MidPdt[i] += a[j] * Kernel[i][j];
}
}
for (int i = 0; i < MatSize; ++i)
{
b[i] = 0;
for (int j = 0; j < MatSize; ++j)
{
b[i] += MidPdt[j] * Kernel[j][i];
}
}
return;
}