gctl_toolkits/tetgm/tetgm.cpp
2025-02-11 10:43:28 +08:00

381 lines
14 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
// add gctl head files
#include "gctl/core.h"
#include "gctl/io.h"
#include "gctl/potential.h"
#include "gctl/utility.h"
using namespace gctl;
const char* pro_info_str = "1.1 - Forward modeling of the gravitational and magnetic data using \
tetrahedron meshs. This program is a toolkit of the GCTL package. The GCTL comes with \
ABSOLUTE NO WARRANTY. Please see instructions or contact the author for more information.";
const char* model_file_str = "Name of the 3D model file. Add .msh extension to specify a Gmsh model file. \
For Tetgen files, one must have both .node and .ele files. And name extensions are not needed for the Tetgen files.";
const char* observation_str = "Name of the observation file. Or initializing parameters of the observation points. \
The input file should have at least three data columns that represent x, y and z coordinates of the observation \
points. Use -d option to select data columns (default is 0,1,2).";
const char* physics_str = "Name of a file that contains the 3D model's physical properties. The file should at least has one column which \
represents model densities. Use -d option to select data columns (default is 0). The option could also take name of the .msh \
file's model data. Otherwise, entry a float value to indicate evenly distributed physical property.";
const char* output_str = "Prefix of the output file's name. _Vz, _Vzx, _Vzy and _Vzz suffix will be added automatically \
according to the gravitational component that is calculated.";
const char* mag_str = "Magnetization parameters. Needed for forward modeling magnetic data. The geo-magnetic field parameters are only used for total intense data.";
int main(int argc, char *argv[]) try
{
flags_parser fp;
fp.set_proname("tetgm");
fp.set_proinfo(pro_info_str);
fp.add_opt('m', "model-file", required_argument, NULL, model_file_str, "<file>", true);
fp.add_opt('b', "observation", required_argument, NULL, observation_str, "<file>[+d<x-col>,<y-col>,<z-col>]|<xmin>/<dx>/<xmax>/<ymin>/<dy>/<ymax>/<elevation>", true);
fp.add_opt('p', "physics", required_argument, NULL, physics_str, "<file>+d<col>|<Gmsh-data>|<value>", true);
fp.add_opt('o', "output-file", required_argument, NULL, output_str, "<file>", true);
fp.add_opt('a', "magnetization", required_argument, NULL, mag_str, "<mag-inc>/<mag-dec>/<geo-inc>/<geo-dec>", false);
fp.add_opt('g', "gravity", no_argument, NULL, "Calculate gravity data.", 0, false);
fp.add_opt('x', "gradient-x", no_argument, NULL, "Calculate gravity gradient data along x-axis.", 0, false);
fp.add_opt('y', "gradient-y", no_argument, NULL, "Calculate gravity gradient data along y-axis.", 0, false);
fp.add_opt('z', "gradient-z", no_argument, NULL, "Calculate gravity gradient data along z-axis.", 0, false);
fp.add_opt('t', "magnetic", no_argument, NULL, "Calculate total intense magnetic data.", 0, false);
fp.add_opt('u', "magnetic-x", no_argument, NULL, "Calculate the x-componment of the magnetic data.", 0, false);
fp.add_opt('v', "magnetic-y", no_argument, NULL, "Calculate the y-componment of the magnetic data.", 0, false);
fp.add_opt('r', "magnetic-z", no_argument, NULL, "Calculate the z-componment of the magnetic data.", 0, false);
fp.add_opt('c', "compact", no_argument, NULL, "Set this option if the index of the mesh's vertice and elements are starting from zero.", 0, false);
fp.add_opt('h', "help", no_argument, NULL, "Show help information.", 0, false);
fp.configure(argc, argv);
if (argc == 1 || fp.set_opt('h'))
{
fp.show_help_page();
return 0;
}
std::string model_file, obser_para, physic_para, mag_para, output_file;
gctl::index_packed_e compact_mode = gctl::NotPacked;
bool components_sign[4] = {false, false, false, false};
bool components_sign_mag[4] = {false, false, false, false};
gctl::gravitational_field_type_e components_mark[4] = {gctl::Vz, gctl::Tzx, gctl::Tzy, gctl::Tzz};
gctl::magnetic_field_type_e components_mark_mag[4] = {gctl::DeltaT, gctl::Bx, gctl::By, gctl::Bz};
fp.get_argv(
{'m', 'b', 'p', 'a', 'o'},
{&model_file, &obser_para, &physic_para, &mag_para, &output_file}
);
// 查看是否通过强制参数检查
if (!fp.pass_mandatory()) return 0;
if (fp.set_opt('g')) components_sign[0] = true;
if (fp.set_opt('x')) components_sign[1] = true;
if (fp.set_opt('y')) components_sign[2] = true;
if (fp.set_opt('z')) components_sign[3] = true;
if (fp.set_opt('t')) components_sign_mag[0] = true;
if (fp.set_opt('u')) components_sign_mag[1] = true;
if (fp.set_opt('v')) components_sign_mag[2] = true;
if (fp.set_opt('r')) components_sign_mag[3] = true;
if (fp.set_opt('c')) compact_mode = Packed;
// check for forward modeling data type
bool forward_grav = false;
bool forward_mag = false;
if (components_sign[0] != false || components_sign[1] != false ||
components_sign[2] != false || components_sign[3] != false) forward_grav = true;
if (components_sign_mag[0] != false || components_sign_mag[1] != false ||
components_sign_mag[2] != false || components_sign_mag[3] != false) forward_mag = true;
if (forward_grav == false && forward_mag == false)
{
GCTL_ShowWhatError("No forward modeling data type is selected.", GCTL_ERROR_ERROR,
0, "Use -h option to see the full instruction.", 0);
return 0;
}
else if (forward_grav == true && forward_mag == true)
{
GCTL_ShowWhatError("Can't forward modeling gravitational and magnetic data at the same time.", GCTL_ERROR_ERROR,
0, "Use -h option to see the full instruction.", 0);
return 0;
}
// declare variables here
bool gmsh_file = false;
// we firstly try to read points
gctl::array<gctl::point3dc> obs_points;
// get tetrahedron mesh
int tet_num;
gctl::array<gctl::vertex3dc> mesh_node;
gctl::array<gctl::grav_tetrahedron> mesh_tet;
gctl::array<gctl::gravtet_para> mesh_tet_gp;
gctl::array<gctl::mag_tetrahedron> mesh_tet_mag;
gctl::array<gctl::magtet_para> mesh_tet_mp;
// define physic array
gctl::array<double> mesh_phys;
// define result array
gctl::array<gctl::point3dc> gm_grad;
gctl::array<gctl::tensor> gm_tensor;
gctl::text_descriptor desc;
// start the sequence here
std::ifstream infile;
// initialize observation points here
double xmin, dx, xmax, ymin, dy, ymax, ele;
if (7 == sscanf(obser_para.c_str(), "%lf/%lf/%lf/%lf/%lf/%lf/%lf",
&xmin, &dx, &xmax, &ymin, &dy, &ymax, &ele))
{
gctl::grid_points_2d(obs_points, xmin, xmax, ymin, ymax, dx, dy, ele);
}
else
{
char obs_file[1024], obs_order[1024];
if (2 == sscanf(obser_para.c_str(),"%[^+]+d%s", obs_file, obs_order))
{
gctl::get_xyz_points(obs_file, obs_points, desc, obs_order);
}
else
{
gctl::get_xyz_points(obser_para, obs_points, desc);
}
}
std::string tmp_str = model_file;
// proceed as Gmsh files
if (tmp_str.substr(tmp_str.length()-4, tmp_str.length()) == ".msh")
{
gmsh_file = true;
gctl::open_infile(infile, model_file);
gctl::read_gmsh_node(infile, mesh_node, compact_mode);
if (forward_grav) {gctl::read_gmsh_element(infile, mesh_tet, mesh_node, compact_mode); tet_num = mesh_tet.size();}
if (forward_mag) {gctl::read_gmsh_element(infile, mesh_tet_mag, mesh_node, compact_mode); tet_num = mesh_tet_mag.size();}
infile.close();
}
// proceed as tetgen files
else
{
gctl::read_Tetgen_node(model_file, mesh_node, compact_mode);
if (forward_grav) {gctl::read_Tetgen_element(model_file, mesh_tet, mesh_node, compact_mode); tet_num = mesh_tet.size();}
if (forward_mag) {gctl::read_Tetgen_element(model_file, mesh_tet_mag, mesh_node, compact_mode); tet_num = mesh_tet_mag.size();}
}
// initiate gravtet_para
double inc_deg, dec_deg, geoinc_deg, geodec_deg;
if (forward_grav) gctl::callink_gravity_para(mesh_tet, mesh_tet_gp);
if (forward_mag)
{
gctl::parse_string_to_value(mag_para, '/', true, inc_deg, dec_deg, geoinc_deg, geodec_deg);
gctl::callink_magnetic_para_earth(mesh_tet_mag, mesh_tet_mp, inc_deg, dec_deg);
}
// Firstly try to explain physic_para as float number
double physic_value;
if (1 == sscanf(physic_para.c_str(), "%lf", &physic_value))
{
mesh_phys.resize(tet_num, physic_value);
}
else
{
// try to use physic_para as file name
std::vector<std::vector<double> > txt_content;
try
{
char physic_filename[1024];
//默认的读入的数据列为第一列
int physic_col = 0;
if (2 != sscanf(physic_para.c_str(),"%[^+]+d%d", physic_filename, &physic_col))
strcpy(physic_filename, physic_para.c_str());
desc.file_name_ = physic_filename;
gctl::read_text2vector2d(desc, txt_content);
if (txt_content.size() != tet_num)
{
std::string msg = "Element size doesn't match.";
throw msg;
}
mesh_phys.resize(txt_content.size());
for (int i = 0; i < mesh_phys.size(); i++)
mesh_phys.at(i) = txt_content.at(i).at(physic_col);
gctl::destroy_vector(txt_content);
goto forward_calculation;
}
catch(std::string err_str)
{
if (!gmsh_file) throw err_str;
else
{
char msg[1024] = "Using ";
strcat(msg, physic_para.c_str());
strcat(msg, " as a data name in ");
strcat(msg, model_file.c_str());
GCTL_ShowWhatError(err_str, GCTL_MESSAGE_ERROR, msg, 0, 0);
}
}
// try to use physic_para as data_name
std::ifstream infile;
gctl::open_infile(infile, model_file);
gctl::read_gmsh_data(infile, mesh_phys, physic_para);
infile.close();
if (mesh_phys.empty())
{
std::string msg = "Density model is not found!";
throw msg;
}
}
forward_calculation:
std::vector<std::vector<double> > save_content;
save_content.resize(obs_points.size());
for (int i = 0; i < obs_points.size(); i++)
save_content[i].resize(4);
for (int i = 0; i < save_content.size(); i++)
{
save_content[i][0] = obs_points.at(i).x;
save_content[i][1] = obs_points.at(i).y;
save_content[i][2] = obs_points.at(i).z;
}
std::string out_name = output_file;
if (forward_grav)
{
if (components_sign[0])
{
gctl::gobser(gm_grad, mesh_tet, obs_points, mesh_phys);
for (int i = 0; i < obs_points.size(); ++i)
{
save_content[i][3] = gm_grad[i].z;
}
gctl::save_vector2d2text(out_name+"_Vz.txt", save_content);
}
if (components_sign[1] || components_sign[2] || components_sign[3])
{
gctl::gobser(gm_tensor, mesh_tet, obs_points, mesh_phys);
if (components_sign[1])
{
for (int i = 0; i < obs_points.size(); ++i)
{
save_content[i][3] = gm_tensor[i].at(2, 0);
}
gctl::save_vector2d2text(out_name+"_Vzx.txt", save_content);
}
if (components_sign[2])
{
for (int i = 0; i < obs_points.size(); ++i)
{
save_content[i][3] = gm_tensor[i].at(2, 1);
}
gctl::save_vector2d2text(out_name+"_Vzy.txt", save_content);
}
if (components_sign[3])
{
for (int i = 0; i < obs_points.size(); ++i)
{
save_content[i][3] = gm_tensor[i].at(2, 2);
}
gctl::save_vector2d2text(out_name+"_Vzz.txt", save_content);
}
}
}
if (forward_mag)
{
if (components_sign_mag[0])
{
gctl::array<double> deltat;
gctl::magobser(gm_grad, mesh_tet_mag, obs_points, mesh_phys);
gctl::magnetic_components2deltaT(gm_grad, deltat, geoinc_deg, geodec_deg);
for (int i = 0; i < obs_points.size(); ++i)
{
save_content[i][3] = deltat[i];
}
gctl::save_vector2d2text(out_name+"_DeltaT.txt", save_content);
}
if (components_sign_mag[1] || components_sign_mag[2] || components_sign_mag[3])
{
gctl::magobser(gm_grad, mesh_tet_mag, obs_points, mesh_phys);
if (components_sign_mag[1])
{
for (int i = 0; i < obs_points.size(); ++i)
{
save_content[i][3] = gm_grad[i].x;
}
gctl::save_vector2d2text(out_name+"_Bx.txt", save_content);
}
if (components_sign_mag[2])
{
for (int i = 0; i < obs_points.size(); ++i)
{
save_content[i][3] = gm_grad[i].y;
}
gctl::save_vector2d2text(out_name+"_By.txt", save_content);
}
if (components_sign_mag[3])
{
for (int i = 0; i < obs_points.size(); ++i)
{
save_content[i][3] = gm_grad[i].z;
}
gctl::save_vector2d2text(out_name+"_Bz.txt", save_content);
}
}
}
return 0;
}
catch(std::exception &e)
{
GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, 0, 0);
}