gctl_toolkits/shc2xyz/func.h
2025-05-12 10:41:04 +08:00

780 lines
24 KiB
C++

/********************************************************
* ██████╗ ██████╗████████╗██╗
* ██╔════╝ ██╔════╝╚══██╔══╝██║
* ██║ ███╗██║ ██║ ██║
* ██║ ██║██║ ██║ ██║
* ╚██████╔╝╚██████╗ ██║ ███████╗
* ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#ifndef _FUNC_H
#define _FUNC_H
// add gctl head files
#include "gctl/core.h"
#include "gctl/utility.h"
#include "gctl/math/legendre.h"
#include "gctl/math/interpolate.h"
#include "gctl/io.h"
#define NORMAL_GRAVITY 9.80665 // m/s^2
enum target_type_e
{
Null,
Topography,
GravDisturbance,
GravDisturbanceLon,
GravDisturbanceLat,
GravAnomaly,
GravPotential,
HeightAnomaly,
RadialGravityGradient,
};
struct spoint : public gctl::point3ds
{
double ref, alti, val;
spoint()
{
lon = lat = ref = alti = rad = val = GCTL_BDL_MAX;
}
void info()
{
std::cout << std::setprecision(16) << lon << " " << lat << " " << ref << " " << alti << " " << val << std::endl;
}
};
typedef std::vector<spoint> sphArray;
// 命令规则 n为阶数 m为次数
class shc2xyz
{
public:
shc2xyz(){}
~shc2xyz(){}
int readSHC(const char*,const char*,const char*, std::string jp); //读入球谐系数
int initTargetType(const char*); //设置计算类型
int initMatrix(const char*,const char*,const char*,const char*); //初始化相关的矩阵大小
int initObs(const char*,const char*,const char*); //初始化观测点 如只有范围参数则只初始化经纬度位置
int relocateAltitude(const char*); //根据输入文件重新确定计算高程
int outObs(const char*); //输出计算结果 如果有文件指定的位置则插值
int calSolution(); //计算球谐结果 同一高程观测值
int calSolution2(const char*); //计算不同高程的观测值
private:
gctl::array<gctl::array<double>> Anm;
gctl::array<gctl::array<double>> Bnm;
gctl::array<gctl::array<double>> Pnm; //伴随勒让德函数系数 这个函数只和观测位置的纬度/余纬度相关 同一纬度只需要计算一次
gctl::matrix<double> mCos; //不同次数cos函数值 这个值只和观测位置的经度相关 行数为不同经度位置 列数为不同次数 矩阵维度即为经度个数*阶次 一般估算在1000*1000级别
gctl::matrix<double> mSin; //不同次数sin函数值 其他与上同
gctl::array<gctl::array<double>> coff_S; //球谐系数sin参数
gctl::array<gctl::array<double>> coff_C; //球谐系数cos参数
gctl::array<gctl::array<double>> multi_array; //乘子矩阵
sphArray obsPoint; //计算地形是的观测位置 即计算半径值
sphArray outPoint; //输出计算值
gctl::legendre_norm_e norSum;
double GM,R; //球谐系数中重力常数与质量的乘积 单位为SI标准 g 与 m
double multi_factor; // 乘子系数
int NN_size; //系数矩阵大小
int lon_size,lat_size;
double refr,refR,altitude;
double lonmin,lonmax,dlon;
double latmin,latmax,dlat;
target_type_e tar_type_;
};
//读取球谐参数文件 文件名 起止阶次 列序列
int shc2xyz::readSHC(const char* filename, const char* para, const char* orders, std::string jp)
{
std::ifstream infile;
gctl::open_infile(infile,filename, "");
int n_start,m_start,n_end,m_end;
if (4 != sscanf(para,"%d/%d/%d/%d",&n_start,&m_start,&n_end,&m_end))
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "wrong parameter: " << para << std::endl;
return -1;
}
//识别列次序
int order[4];
if (4 != sscanf(orders,"%d,%d,%d,%d",&order[0],&order[1],&order[2],&order[3]))
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "wrong parameter: " << orders << std::endl;
return -1;
}
//按照最大阶数初始化下半三角矩阵
NN_size = n_end + 1;
//对于二维vector来说 对行初始化的时候需要使用resize 而对于列的初始化而言使用reserve效率更高
coff_C.resize(NN_size);
coff_S.resize(NN_size);
for (int i = 0; i < NN_size; i++)
{
coff_C[i].resize(i+1,0.0);
coff_S[i].resize(i+1,0.0);
}
int jp_num = atoi(jp.c_str());
int n,m; //行列号
std::string temp_d;
double temp_c,temp_s;
std::vector<std::string> temp_row; temp_row.reserve(100); //出现初始化100个double的空间 这样读文件更快
std::string temp_str;
std::stringstream temp_ss;
while (getline(infile, temp_str))
{
if (jp_num > 0) {jp_num--; continue;}
if (temp_str[0] == '#') continue;
//gctl::parse_string_to_vector(temp_str, ' ', temp_row);
if (*(temp_str.begin()) == '#') continue;
if (!temp_row.empty()) temp_row.clear();
temp_ss.str("");
temp_ss.clear();
temp_ss << temp_str;
while (temp_ss >> temp_d)
{
temp_row.push_back(temp_d);
}
n = atoi(temp_row[order[0]].c_str());
m = atoi(temp_row[order[1]].c_str());
temp_c = gctl::str2double(temp_row[order[2]]);
temp_s = gctl::str2double(temp_row[order[3]]);
if (n >= n_start && n <= n_end && m >= m_start && m <= m_end)
{
coff_C[n][m] = temp_c;
coff_S[n][m] = temp_s;
}
}
infile.close();
return 0;
}
int shc2xyz::initObs(const char* r_para,const char* i_para,const char* refsys)
{
//解析参考球
if (!strcmp(refsys,"NULL"))
{
refr = refR = 0.0;
}
else if (!strcmp(refsys,"WGS84"))
{
refr = GCTL_WGS84_PoleRadius;
refR = GCTL_WGS84_EquatorRadius;
}
else if (!strcmp(refsys,"Earth"))
{
refr = GCTL_Earth_Radius;
refR = GCTL_Earth_Radius;
}
else if (!strcmp(refsys,"Moon"))
{
refr = GCTL_Moon_Radius;
refR = GCTL_Moon_Radius;
}
else if (!strcmp(refsys,"Mars"))
{
refr = GCTL_Mars_Radius;
refR = GCTL_Mars_Radius;
}
else if (2 != sscanf(refsys,"%lf/%lf",&refr,&refR))
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "wrong parameter: " << refsys << std::endl;
return -1;
}
//解析经纬度范围 按规则网络初始化观测点位置
if (5 != sscanf(r_para,"%lf/%lf/%lf/%lf/%lf",&lonmin,&lonmax,&latmin,&latmax,&altitude))
{
if (4 != sscanf(r_para,"%lf/%lf/%lf/%lf",&lonmin,&lonmax,&latmin,&latmax))
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "wrong parameter: " << r_para << std::endl;
return -1;
}
else altitude = 0.0;
}
//解析间隔
if (2 != sscanf(i_para,"%lf/%lf",&dlon,&dlat))
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "wrong parameter: " << i_para << std::endl;
return -1;
}
spoint temp_spoint;
double lon,lat;
lon_size = round((lonmax-lonmin)/dlon) + 1;
lat_size = round((latmax-latmin)/dlat) + 1;
obsPoint.reserve(lon_size*lat_size);
for (int i = 0; i < lat_size; i++)
{
for (int j = 0; j < lon_size; j++)
{
lat = latmin + i*dlat; lon = lonmin + j*dlon;
temp_spoint.lon = lon; temp_spoint.lat = lat;
temp_spoint.ref = gctl::ellipse_radius_2d(refR, refr, temp_spoint.lat*GCTL_Pi/180.0);
temp_spoint.alti = altitude;
temp_spoint.rad = temp_spoint.ref + temp_spoint.alti;
temp_spoint.val = 0.0;
obsPoint.push_back(temp_spoint);
}
}
return 0;
}
int shc2xyz::relocateAltitude(const char* filepara)
{
char filename[1024];
int orders[3] = {0,1,2}; //默认的读入的数据列为前三列
if(!strcmp(filepara,"NULL")) return 0;
//解析文件名中是否含有+d标示 如果有则将+d以前解释为filename 之后为需要读入的数据列 默认为逗号分隔
//否则将filepara赋值为filename
if (4 != sscanf(filepara,"%[^+]+d%d,%d,%d",filename,&orders[0],&orders[1],&orders[2]))
strcpy(filename,filepara);
std::ifstream infile;
gctl::open_infile(infile,filename,"");
int numM,numN,tempM,tempN;
std::string temp_str;
std::stringstream temp_ss;
double temp_d,temp_lon,temp_lat,temp_alti;
std::vector<double> temp_row;
numM = floor((latmax-latmin)/dlat)+1;
numN = floor((lonmax-lonmin)/dlon)+1;
while(getline(infile,temp_str))
{
if (*(temp_str.begin()) == '#') continue;
temp_ss.str(""); temp_ss.clear(); temp_ss << temp_str;
if(!temp_row.empty()) temp_row.clear();
while(temp_ss >> temp_d)
temp_row.push_back(temp_d);
temp_lon = temp_row[orders[0]];
temp_lat = temp_row[orders[1]];
temp_alti = temp_row[orders[2]];
tempM = round((temp_lat-latmin)/dlat);
tempN = round((temp_lon-lonmin)/dlon);
obsPoint[tempM*numN+tempN].alti = temp_alti;
obsPoint[tempM*numN+tempN].rad = obsPoint[tempM*numN+tempN].ref + temp_alti;
}
infile.close();
return 0;
}
int shc2xyz::initTargetType(const char* type)
{
if(!strcmp(type,"n")) //topography
tar_type_ = Null;
else if(!strcmp(type,"t")) //topography
tar_type_ = Topography;
else if (!strcmp(type,"d") || !strcmp(type,"g"))
tar_type_ = GravAnomaly;
else if (!strcmp(type,"r"))
tar_type_ = RadialGravityGradient;
else if (!strcmp(type,"p"))
tar_type_ = GravPotential;
else if (!strcmp(type,"h"))
tar_type_ = HeightAnomaly;
else if (!strcmp(type,"dlon"))
tar_type_ = GravDisturbanceLon;
else if (!strcmp(type,"dlat"))
tar_type_ = GravDisturbanceLat;
else
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "unknown calculation type of " << type << std::endl;
return -1;
}
return 0;
}
//初始化矩阵
int shc2xyz::initMatrix(const char* type,const char* para,const char* norType,const char* zfile)
{
//初始化GM与R
if (strcmp(para,"NULL")) //如果para不为NULL则识别参数 否则将GM与R初始化为MAX_BDL
{
if (2 != sscanf(para,"%lf/%lf",&GM,&R))
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "wrong parameter: " << para << std::endl;
return -1;
}
}
else GM = R = GCTL_BDL_MAX;
//初始化归一化类型
if (!strcmp(norType,"g")) norSum = gctl::Pi4;
else if (!strcmp(norType,"m")) norSum = gctl::One;
else
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "wrong parameter: " << norType << std::endl;
return -1;
}
//初始化伴随勒让德函数矩阵
Pnm.resize(NN_size);
for (int i = 0; i < NN_size; i++)
Pnm.at(i).resize(i+1,0.0);
//初始化sin和cos矩阵
mCos.resize(lon_size, NN_size);
mSin.resize(lon_size, NN_size);
//计算mCos和mSin的值
int i,j;
double lon;
#pragma omp parallel for private(i,j,lon) schedule(guided)
for (i = 0; i < lon_size; i++)
{
lon = lonmin + i*dlon;
for (j = 0; j < NN_size; j++)
{
mCos[i][j] = cos(j*lon*GCTL_Pi/180.0);
mSin[i][j] = sin(j*lon*GCTL_Pi/180.0);
}
}
//计算勒让德函数系数
gctl::get_a_nm_array(NN_size, Anm);
gctl::get_b_nm_array(NN_size, Bnm);
//计算乘子参数
if(!strcmp(type,"n")) // null
multi_factor = 1.0;
else if(!strcmp(type,"t")) //topography
multi_factor = 1.0;
else if (!strcmp(type,"d") || !strcmp(type,"g")) //gravity disturbance
multi_factor = 1e+5*GM/(R*R);
else if (!strcmp(type,"r")) //gravity disturbance
multi_factor = 1e+9*GM/(R*R);
else if (!strcmp(type,"p"))
multi_factor = 1e+5*GM/R;
else if (!strcmp(type,"h"))
multi_factor = 1e+5*GM/(R*NORMAL_GRAVITY*1e+5);
else if (!strcmp(type,"dlat") || !strcmp(type,"dlon"))
multi_factor = 1e+5*GM/(R*R);
else
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "unknown calculation type of " << type << std::endl;
return -1;
}
//初始化乘子矩阵
multi_array.resize(lat_size);
for (i = 0; i < lat_size; i++)
{
multi_array[i].resize(NN_size,1.0); //初始化乘子矩阵为1 适用于地形等直接计算的类型
}
//如果计算高程不在同一高程 则不能使用multi_array 同时应该使用calSolution2()函数
if (strcmp(zfile,"NULL"))
return 0;
//如果计算类型不是地形等直接计算类型则需要检验-g选项是否已经设置
if (strcmp(type,"t"))
{
if (GM == GCTL_BDL_MAX || R == GCTL_BDL_MAX)
{
std::cerr << GCTL_BOLDRED << "error ==> " << GCTL_RESET << "-g option must be set for gravitational calculation" << std::endl;
return -1;
}
}
//根据不同类型计算乘子参数和乘子矩阵
if (!strcmp(type,"d")) //gravity disturbance
{
//#pragma omp parallel for private(i,j) shared(R,lon_size) schedule(guided)
#pragma omp parallel for private(i,j) schedule(guided)
for (i = 0; i < lat_size; i++)
{
for (j = 0; j < NN_size; j++)
{
multi_array[i][j] = pow(R/obsPoint[i*lon_size].rad,j+2)*(j+1);
}
}
}
else if (!strcmp(type,"r")) //gravity gradient
{
//#pragma omp parallel for private(i,j) shared(R,lon_size) schedule(guided)
#pragma omp parallel for private(i,j) schedule(guided)
for (i = 0; i < lat_size; i++)
{
for (j = 0; j < NN_size; j++)
{
multi_array[i][j] = pow(R/obsPoint[i*lon_size].rad,j+2)*(j+1)*(j+2)/obsPoint[i*lon_size].rad;
}
}
}
else if (!strcmp(type,"g")) //gravity anomaly
{
//#pragma omp parallel for private(i,j) shared(R,lon_size) schedule(guided)
#pragma omp parallel for private(i,j) schedule(guided)
for (i = 0; i < lat_size; i++)
{
for (j = 0; j < NN_size; j++)
{
multi_array[i][j] = pow(R/obsPoint[i*lon_size].rad,j+2)*(j-1);
}
}
}
else if (!strcmp(type,"p")) //geo-potential
{
//#pragma omp parallel for private(i,j) shared(R,lon_size) schedule(guided)
#pragma omp parallel for private(i,j) schedule(guided)
for (i = 0; i < lat_size; i++)
{
for (j = 0; j < NN_size; j++)
{
multi_array[i][j] = pow(R/obsPoint[i*lon_size].rad,j+1);
}
}
}
else if (!strcmp(type,"dlon") || !strcmp(type,"dlat"))
{
//#pragma omp parallel for private(i,j) shared(R,lon_size) schedule(guided)
#pragma omp parallel for private(i,j) schedule(guided)
for (i = 0; i < lat_size; i++)
{
for (j = 0; j < NN_size; j++)
{
multi_array[i][j] = pow(R/obsPoint[i*lon_size].rad,j+2);
}
}
}
return 0;
}
int shc2xyz::outObs(const char* filename)
{
if (!strcmp(filename,"NULL")) //没有输入文件 直接输出规则网计算结果
{
if (tar_type_ == Null)
{
std::cout << "# NaN value = 1e+30" << std::endl;
std::cout << "# lon(deg) lat(deg) data(unknown)" << std::endl;
for (int i = 0; i < obsPoint.size(); i++)
{
std::cout << std::setprecision(16) << obsPoint[i].lon << " " << obsPoint[i].lat << " " << obsPoint[i].val << std::endl;
}
}
else if (tar_type_ == Topography)
{
std::cout << "# NaN value = 1e+30" << std::endl;
std::cout << "# topography = radius - reference" << std::endl;
std::cout << "# lon(deg) lat(deg) reference-radius(m) topography(m)" << std::endl;
for (int i = 0; i < obsPoint.size(); i++)
{
std::cout << std::setprecision(16) << obsPoint[i].lon << " " << obsPoint[i].lat << " "
<< obsPoint[i].ref << " " << obsPoint[i].val - obsPoint[i].ref << std::endl;
}
}
else if (tar_type_ == HeightAnomaly)
{
std::cout << "# NaN value = 1e+30" << std::endl;
std::cout << "# Normal Gravity = " << NORMAL_GRAVITY << " m/s^2" << std::endl;
std::cout << "# lon(deg) lat(deg) reference-radius(m) height-anomaly(m)" << std::endl;
for (int i = 0; i < obsPoint.size(); i++)
{
obsPoint[i].info();
}
}
else
{
std::cout << "# NaN value = 1e+30" << std::endl;
std::cout << "# lon(deg) lat(deg) reference-radius(m) altitude(m) grav-field(mGal|Eo)" << std::endl;
for (int i = 0; i < obsPoint.size(); i++)
{
obsPoint[i].info();
}
}
}
else
{
std::ifstream infile;
gctl::open_infile(infile,filename,"");
spoint temp_sp;
std::string temp_str;
std::stringstream temp_ss;
while (getline(infile,temp_str))
{
if(*(temp_str.begin()) == '#') continue;
temp_ss.str("");
temp_ss.clear();
temp_ss << temp_str;
temp_ss >> temp_sp.lon >> temp_sp.lat;
temp_sp.ref = gctl::ellipse_radius_2d(refR, refr, temp_sp.lat*GCTL_Pi/180.0);
temp_sp.alti = altitude;
outPoint.push_back(temp_sp);
}
infile.close();
int numM,numN,tempM,tempN;
double lon1,lon2,lat1,lat2;
numM = floor((latmax-latmin)/dlat)+1;
numN = floor((lonmax-lonmin)/dlon)+1;
for (int i = 0; i < outPoint.size(); i++)
{
tempM = floor((outPoint[i].lat-latmin)/dlat);
tempN = floor((outPoint[i].lon-lonmin)/dlon);
if (tempM == (numM-1))
tempM -= 1;
if (tempN == (numN-1))
tempN -= 1;
if (tempM >= 0 && tempN >= 0 && tempM <= numM-2 && tempN <= numN-2)
{
lon1 = lonmin+tempN*dlon;
lon2 = lonmin+(tempN+1)*dlon;
lat1 = latmin+tempM*dlat;
lat2 = latmin+(tempM+1)*dlat;
outPoint[i].val = gctl::sph_linear_interpolate_deg(lat1,lat2,lon1,lon2,
outPoint[i].lat,outPoint[i].lon,
obsPoint[tempM*numN+tempN].val,
obsPoint[tempM*numN+tempN+1].val,
obsPoint[(tempM+1)*numN+tempN].val,
obsPoint[(tempM+1)*numN+tempN+1].val);
}
}
if (tar_type_ == Null)
{
std::cout << "# NaN value = 1e+30" << std::endl;
std::cout << "# lon(deg) lat(deg) data(unknown)" << std::endl;
for (int i = 0; i < outPoint.size(); i++)
{
std::cout << std::setprecision(16) << outPoint[i].lon << " " << outPoint[i].lat << " " << outPoint[i].val << std::endl;
}
}
else if (tar_type_ == Topography)
{
std::cout << "# NaN value = 1e+30" << std::endl;
std::cout << "# topography = radius - reference" << std::endl;
std::cout << "# lon(deg) lat(deg) reference-radius(m) topography(m)" << std::endl;
for (int i = 0; i < outPoint.size(); i++)
{
std::cout << std::setprecision(16) << outPoint[i].lon << " " << outPoint[i].lat << " "
<< outPoint[i].ref << " " << outPoint[i].val - outPoint[i].ref << std::endl;
}
}
else if (tar_type_ == HeightAnomaly)
{
std::cout << "# NaN value = 1e+30" << std::endl;
std::cout << "# Normal Gravity = " << NORMAL_GRAVITY << " m/s^2" << std::endl;
std::cout << "# lon(deg) lat(deg) reference-radius(m) height-anomaly(m)" << std::endl;
for (int i = 0; i < outPoint.size(); i++)
{
outPoint[i].info();
}
}
else
{
std::cout << "# NaN value = 1e+30" << std::endl;
std::cout << "# lon(deg) lat(deg) reference-radius(m) altitude(m) grav-field(mGal|Eo)" << std::endl;
for (int i = 0; i < outPoint.size(); i++)
{
outPoint[i].info();
}
}
}
return 0;
}
int shc2xyz::calSolution()
{
//计算
int i,j,n,m;
double temp_d,lat;
gctl::progress_bar bar(lat_size,"Process");
if (tar_type_ == GravDisturbanceLon)
{
for (i = 0; i < lat_size; i++)
{
bar.progressed(i);
lat = latmin + dlat*i;
//计算伴随勒让德函数 对于同一个纬度只需要计算一次
gctl::nalf_sfcm(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum);
//这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行
//一种并行方案更快一些
#pragma omp parallel for private(j,n,m,temp_d) shared(i) schedule(guided)
for (j = 0; j < lon_size; j++)
{
temp_d = 0;
for (n = 0; n < NN_size; n++)
{
for (m = 0; m < n+1; m++)
{
temp_d += (1.0/cos(lat*GCTL_Pi/180.0))*multi_array[i][n]*m*Pnm[n][m]*(coff_S[n][m]*mCos[j][m] - coff_C[n][m]*mSin[j][m]);
}
}
obsPoint[i*lon_size+j].val = multi_factor*temp_d;
}
}
}
else if (tar_type_ == GravDisturbanceLat)
{
for (i = 0; i < lat_size; i++)
{
bar.progressed(i);
lat = latmin + dlat*i;
//计算伴随勒让德函数 对于同一个纬度只需要计算一次
gctl::nalf_sfcm(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum,true);
//这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行
//一种并行方案更快一些
#pragma omp parallel for private(j,n,m,temp_d) shared(i) schedule(guided)
for (j = 0; j < lon_size; j++)
{
temp_d = 0;
for (n = 0; n < NN_size; n++)
{
for (m = 0; m < n+1; m++)
{
temp_d += multi_array[i][n]*Pnm[n][m]*(coff_C[n][m]*mCos[j][m]+coff_S[n][m]*mSin[j][m]);
}
}
obsPoint[i*lon_size+j].val = multi_factor*temp_d;
}
}
}
else
{
for (i = 0; i < lat_size; i++)
{
bar.progressed(i);
lat = latmin + dlat*i;
//计算伴随勒让德函数 对于同一个纬度只需要计算一次
gctl::nalf_sfcm(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum,false);
//这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行
//一种并行方案更快一些
#pragma omp parallel for private(j,n,m,temp_d) shared(i) schedule(guided)
for (j = 0; j < lon_size; j++)
{
temp_d = 0;
for (n = 0; n < NN_size; n++)
{
for (m = 0; m < n+1; m++)
{
temp_d += multi_array[i][n]*Pnm[n][m]*(coff_C[n][m]*mCos[j][m]+coff_S[n][m]*mSin[j][m]);
}
}
obsPoint[i*lon_size+j].val = multi_factor*temp_d;
}
}
}
return 0;
}
int shc2xyz::calSolution2(const char* type)
{
//计算
int i,j,n,m;
double temp_d,lat;
gctl::progress_bar bar(lat_size,"Process");
if (!strcmp(type,"d"))
{
for (i = 0; i < lat_size; i++)
{
bar.progressed(i);
lat = latmin + dlat*i;
//计算伴随勒让德函数 对于同一个纬度只需要计算一次
gctl::nalf_sfcm(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum);
//这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行
//一种并行方案更快一些
//#pragma omp parallel for private(j,n,m,temp_d) shared(i,multi_factor,lon_size) schedule(guided)
#pragma omp parallel for private(j,n,m,temp_d) shared(i) schedule(guided)
for (j = 0; j < lon_size; j++)
{
temp_d = 0;
for (n = 0; n < NN_size; n++)
{
for (m = 0; m < n+1; m++)
{
//pow(R/obsPoint[i*lon_size+j].rad,n+2)*(n+1)
temp_d += pow(R/obsPoint[i*lon_size+j].rad,n+2)*(n+1)*Pnm[n][m]*(coff_C[n][m]*mCos[j][m]+coff_S[n][m]*mSin[j][m]);
}
}
obsPoint[i*lon_size+j].val = multi_factor*temp_d;
}
}
}
else if (!strcmp(type,"g"))
{
for (i = 0; i < lat_size; i++)
{
bar.progressed(i);
lat = latmin + dlat*i;
//计算伴随勒让德函数 对于同一个纬度只需要计算一次
gctl::nalf_sfcm(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum);
//这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行
//一种并行方案更快一些
//#pragma omp parallel for private(j,n,m,temp_d) shared(i,multi_factor,lon_size) schedule(guided)
#pragma omp parallel for private(j,n,m,temp_d) shared(i) schedule(guided)
for (j = 0; j < lon_size; j++)
{
temp_d = 0;
for (n = 0; n < NN_size; n++)
{
for (m = 0; m < n+1; m++)
{
//pow(R/obsPoint[i*lon_size+j].rad,n+2)*(n-1)
temp_d += pow(R/obsPoint[i*lon_size+j].rad,n+2)*(n-1)*Pnm[n][m]*(coff_C[n][m]*mCos[j][m]+coff_S[n][m]*mSin[j][m]);
}
}
obsPoint[i*lon_size+j].val = multi_factor*temp_d;
}
}
}
else if (!strcmp(type,"p"))
{
for (i = 0; i < lat_size; i++)
{
bar.progressed(i);
lat = latmin + dlat*i;
//计算伴随勒让德函数 对于同一个纬度只需要计算一次
gctl::nalf_sfcm(Pnm,Anm,Bnm,NN_size,90.0-lat,norSum);
//这里可以使用并行加速计算外层循环 内层计算因为是递归计算因此不能并行
//一种并行方案更快一些
//#pragma omp parallel for private(j,n,m,temp_d) shared(i,multi_factor,lon_size) schedule(guided)
#pragma omp parallel for private(j,n,m,temp_d) shared(i) schedule(guided)
for (j = 0; j < lon_size; j++)
{
temp_d = 0;
for (n = 0; n < NN_size; n++)
{
for (m = 0; m < n+1; m++)
{
//pow(R/obsPoint[i*lon_size+j].rad,n+1)
temp_d += pow(R/obsPoint[i*lon_size+j].rad,n+1)*Pnm[n][m]*(coff_C[n][m]*mCos[j][m]+coff_S[n][m]*mSin[j][m]);
}
}
obsPoint[i*lon_size+j].val = multi_factor*temp_d;
}
}
}
return 0;
}
#endif //_FUNC_H