gctl_toolkits/archive/mshinterpolate/dataStruct.h
2024-09-10 20:25:18 +08:00

228 lines
5.0 KiB
C

#ifndef _DATASTRUCT_H
#define _DATASTRUCT_H
#include "sysDefine.h"
//直角坐标系下的一个点
struct cpoint
{
double x,y,z;
cpoint(){x = y = z = MAX_DBL;}
};
typedef vector<cpoint> cpointArray;
//直角坐标点的一些数学运算
cpoint operator -(cpoint a, cpoint b)
{
cpoint m;
m.x=a.x-b.x;
m.y=a.y-b.y;
m.z=a.z-b.z;
return m;
}
cpoint operator +(cpoint a, cpoint b) //矢量加法
{
cpoint m;
m.x=a.x+b.x;
m.y=a.y+b.y;
m.z=a.z+b.z;
return m;
}
cpoint operator *(double sign,cpoint b) //矢量乘法
{
cpoint m;
m.x=sign*b.x;
m.y=sign*b.y;
m.z=sign*b.z;
return m;
}
//重载逻辑等操作符作用于矢量,判断两个直角点是否相等
bool operator ==(cpoint a, cpoint b)
{
if(fabs(a.x-b.x)<ZERO&&fabs(a.y-b.y)<ZERO&&fabs(a.z-b.z)<ZERO)
{
return 1;
}
else return 0;
}
double dot(cpoint a, cpoint b) //矢量点乘
{
return a.x*b.x+a.y*b.y+a.z*b.z;
}
cpoint cross(cpoint a,cpoint b) //矢量叉乘
{
cpoint v;
v.x = a.y*b.z-a.z*b.y;
v.y = a.z*b.x-a.x*b.z;
v.z = a.x*b.y-a.y*b.x;
return v;
}
//返回两个直角坐标点的中点位置
cpoint middleCpoint(cpoint a,cpoint b)
{
cpoint c;
c.x = 0.5*(a.x + b.x);
c.y = 0.5*(a.y + b.y);
c.z = 0.5*(a.z + b.z);
return c;
}
//返回两点之间的一个点 以第一个点为参考点 第三个参数为相对于原线段的比例
cpoint scaleCpoint(cpoint a,cpoint b,double scale)
{
cpoint c;
c.x = a.x + (b.x - a.x)*scale;
c.y = a.y + (b.y - a.y)*scale;
c.z = a.z + (b.z - a.z)*scale;
return c;
}
cpoint rescaleCpoint(cpoint a,double refr)
{
cpoint c;
double m = sqrt(a.x*a.x+a.y*a.y+a.z*a.z);
c.x = a.x*refr/m;
c.y = a.y*refr/m;
c.z = a.z*refr/m;
return c;
}
double module(cpoint a)
{
return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);
}
double distanceCpoint(cpoint a, cpoint b)
{
cpoint m;
double d;
m.x=a.x-b.x;
m.y=a.y-b.y;
m.z=a.z-b.z;
d = sqrt(m.x*m.x + m.y*m.y + m.z*m.z);
return d;
}
double sphAngle(cpoint a,cpoint b) //两个矢量的球心角 注意返回值为弧度
{
double m1,m2;
m1 = sqrt(a.x*a.x+a.y*a.y+a.z*a.z);
m2 = sqrt(b.x*b.x+b.y*b.y+b.z*b.z);
return acos((a.x*b.x+a.y*b.y+a.z*b.z)/(m1*m2));
}
//球坐标系下的一个点
struct spoint
{
double lon,lat,rad;
spoint(){lon = lat = rad = MAX_DBL;}
};
typedef vector<spoint> spointArray;
/*直角坐标与球坐标相互转换函数 注意这里使用的球坐标是地理坐标范围 即经度为-180~180 纬度为-90~90*/
cpoint s2c(spoint s)
{
cpoint c;
c.x = s.rad*sin((0.5 - s.lat/180.0)*pi)*cos((2.0 + s.lon/180.0)*pi);
c.y = s.rad*sin((0.5 - s.lat/180.0)*pi)*sin((2.0 + s.lon/180.0)*pi);
c.z = s.rad*cos((0.5 - s.lat/180.0)*pi);
return c;
}
spoint c2s(cpoint c)
{
spoint s;
s.rad = sqrt(pow(c.x,2)+pow(c.y,2)+pow(c.z,2));
if (fabs(s.rad)<ZERO) //点距离原点极近 将点置于原点
{
s.lat = s.lon = s.rad = 0.0;
}
else
{
s.lat = 90.0 - acos(c.z/s.rad)*180.0/pi;
s.lon = atan2(c.y,c.x)*180.0/pi;
}
return s;
}
//顶点
struct vertex
{
int id; //索引
cpoint posic; //直角坐标系位置
spoint posis; //球坐标系位置
vertex()
{
id = -1; //初始化顶点索引值为-1 这里不需要初始化坐标位置 因为已经由相应的初始化函数完成了初始化
}
void set(int i) //设置索引值
{
id = i;
}
void set(cpoint c) //从直角坐标位置初始化
{
posic.x = c.x; posic.y = c.y; posic.z = c.z;
posis = c2s(posic);
}
void set(spoint s) //从球坐标位置初始化
{
posis.lon = s.lon; posis.lat = s.lat; posis.rad = s.rad;
posic = s2c(posis);
}
void info() //显示顶点信息
{
cout << id << " " << setprecision(16) << posic.x << " " << posic.y << " " << posic.z << " " << posis.lon << " " << posis.lat << " " << posis.rad << endl;
}
};
typedef vector<vertex> vertexArray;
typedef map<int,vertex> idMap; //顶点索引值映射 用于通过索引值寻找相应顶点
typedef map<string,vertex> strMap; //顶点位置映射 用于通过顶点位置寻找相应顶点
typedef map<int,int> outIdMap; //输出msh文件时重新索引三角形顶点集
//三角形信息结构体,包含三角形的三个顶点索引,逆时针排序
struct triangle
{
int id;
int vec[3];//三角形顶点
int phys; //三角形的物理属性组
triangle() //初始化顶点索引
{
phys = 0; //默认的物理属性组为0
vec[0] = vec[1] = vec[2] = -1;
}
};
typedef vector<triangle> triangleArray;
//矢量与平面的交点
cpoint lineOnPlane(cpoint c,cpoint normal,cpoint p)
{
cpoint m;
m.x = 0; m.y = 0; m.z = 0;
double t;
if (dot(normal,p) != 0) //平面与矢量平行
{
t = dot(normal,c)/dot(normal,p);
m.x += p.x*t;
m.y += p.y*t;
m.z += p.z*t;
}
return m;
}
//细分三角形面积比形式的三角形内插值函数
double triInterp_area(cpoint p,cpoint p1,cpoint p2,cpoint p3,double d1,double d2,double d3)
{
cpoint pp1 = p1 - p;
cpoint pp2 = p2 - p;
cpoint pp3 = p3 - p;
//三角形的面积等于叉乘的1/2 这里只计算比值 所以不需要乘以1/2
double a1 = module(cross(pp2,pp3));
double a2 = module(cross(pp3,pp1));
double a3 = module(cross(pp1,pp2));
return (d1*a1+d2*a2+d3*a3)/(a1+a2+a3);;
}
#endif