gctl_tutorials/examples/traveltime_tet3d_ex.cpp

140 lines
5.1 KiB
C++
Raw Normal View History

2024-09-10 20:19:20 +08:00
/********************************************************
*
*
*
*
*
*
* Geophysical Computational Tools & Library (GCTL)
*
* Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn)
*
* GCTL is distributed under a dual licensing scheme. You can redistribute
* it and/or modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 2
* of the License, or (at your option) any later version. You should have
* received a copy of the GNU Lesser General Public License along with this
* program. If not, see <http://www.gnu.org/licenses/>.
*
* If the terms and conditions of the LGPL v.2. would prevent you from using
* the GCTL, please consider the option to obtain a commercial license for a
* fee. These licenses are offered by the GCTL's original author. As a rule,
* licenses are provided "as-is", unlimited in time for a one time fee. Please
* send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget
* to include some description of your company and the realm of its activities.
* Also add information on how to contact you by electronic and paper mail.
******************************************************/
#include "gctl/core.h"
#include "gctl/io.h"
#include "gctl/seismic.h"
#include "cmath"
using namespace gctl;
int main(int argc, char const *argv[])
{
try
{
std::string mesh_file = "../data/fmm3d/cube.1";
// read triangular mesh's vertice and elements
array<vertex3dc> tetgen_node;
array<tetrahedron> tetgen_tet;
read_Tetgen_node(mesh_file, tetgen_node);
read_Tetgen_element(mesh_file, tetgen_tet, tetgen_node);
array<fmm_vertex3dc> fmm_node;
array<fmm_tetrahedron> fmm_ele;
array<double> node_time(tetgen_node.size(), GCTL_BDL_MAX);
array<double> mesh_slow(fmm_ele.size(), 1.0);
create_fmm_mesh(tetgen_node, tetgen_tet, node_time, mesh_slow, fmm_node, fmm_ele);
std::ofstream outfile;
gctl::open_outfile(outfile, mesh_file, ".msh");
save2gmsh(outfile, tetgen_tet, tetgen_node, gctl::NotPacked);
// declare a source point and calculate
seis_point3d_tet source;
source.set(point3dc(5.0, 250.0, 250.0), 1);
source.find_host_element(fmm_ele.get(), fmm_ele.size());
// assign initial tags for elements
source.host_ele->tag = 1;
for (int i = 0; i < 4; i++)
{
source.host_ele->vert[i]->tag = 2;
*source.host_ele->vert[i]->time_ptr = *source.host_ele->slow_ptr *
distance(*source.host_ele->vert[i], source);
}
// declare a source point and calculate
seis_point3d_tet receiver;
receiver.set(point3dc(995.0, 250.0, 495.0), 1);
receiver.find_host_element(fmm_ele.get(), fmm_ele.size());
std::vector<fmm_vertex3dc*> rece_node;
for (int i = 0; i < 4; i++)
{
rece_node.push_back(receiver.host_ele->vert[i]);
}
array<double> jn_temp(fmm_ele.size());
array<double> time_ele_grad(fmm_ele.size(), 0.0);
sparray2d<double> jn(fmm_node.size(), fmm_ele.size(), 0.0);
std::vector<fmm_vertex3dc*> wave_front;
std::vector<fmm_vertex3dc*> march_record;
double temp_val;
for (int i = 0; i < 4; i++)
{
//初始化前四个梯度值
//对元素的慢度求梯度即为源到顶点的距离
temp_val= distance(*source.host_ele->vert[i], source);
jn.at(source.host_ele->vert[i]->id)->set(source.host_ele->id, temp_val);
}
// calculate
clock_t start = clock();
fmm3d_forward_tetrahedron(&fmm_node, &fmm_ele, &wave_front, &march_record, &rece_node, &jn, &jn_temp);
clock_t end = clock();
std::cout << "FMM's time: " << 1000.0*(end - start)/(double)CLOCKS_PER_SEC << " ms" << std::endl;
double r[4], w_sum;
for (int i = 0; i < 4; i++)
{
r[i] = distance(*receiver.host_ele->vert[i], receiver) + GCTL_ZERO;
}
w_sum = 1.0/r[0] + 1.0/r[1] + 1.0/r[2] + 1.0/r[3];
receiver.time = *receiver.host_ele->vert[0]->time_ptr/(r[0]*w_sum) +
*receiver.host_ele->vert[1]->time_ptr/(r[1]*w_sum) +
*receiver.host_ele->vert[2]->time_ptr/(r[2]*w_sum) +
*receiver.host_ele->vert[3]->time_ptr/(r[3]*w_sum);
for (int i = 0; i < 4; i++)
{
jn.at(receiver.host_ele->vert[i]->id)->export_dense(time_ele_grad, 1.0/(r[i]*w_sum), gctl::AppendVal);
}
for (int i = 0; i < node_time.size(); i++)
{
if (node_time[i] == GCTL_BDL_MAX)
{
node_time[i] = NAN;
}
}
std::cout << "Receiver's time = " << receiver.time << std::endl;
save_gmsh_data(outfile, "Arrival time", node_time.get(), node_time.size(), NodeData, gctl::NotPacked);
save_gmsh_data(outfile, "receiver's gradient", time_ele_grad.get(), time_ele_grad.size(), ElemData, gctl::NotPacked);
outfile.close();
}
catch(std::exception &e)
{
GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, 0, 0);
}
}