/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "gctl/core.h" #include "gctl/io.h" #include "gctl/seismic.h" #include "cmath" using namespace gctl; int main(int argc, char const *argv[]) { try { std::string mesh_file = "../data/fmm3d/cube.1"; // read triangular mesh's vertice and elements array tetgen_node; array tetgen_tet; read_Tetgen_node(mesh_file, tetgen_node); read_Tetgen_element(mesh_file, tetgen_tet, tetgen_node); array fmm_node; array fmm_ele; array node_time(tetgen_node.size(), GCTL_BDL_MAX); array mesh_slow(fmm_ele.size(), 1.0); create_fmm_mesh(tetgen_node, tetgen_tet, node_time, mesh_slow, fmm_node, fmm_ele); std::ofstream outfile; gctl::open_outfile(outfile, mesh_file, ".msh"); save2gmsh(outfile, tetgen_tet, tetgen_node, gctl::NotPacked); // declare a source point and calculate seis_point3d_tet source; source.set(point3dc(5.0, 250.0, 250.0), 1); source.find_host_element(fmm_ele.get(), fmm_ele.size()); // assign initial tags for elements source.host_ele->tag = 1; for (int i = 0; i < 4; i++) { source.host_ele->vert[i]->tag = 2; *source.host_ele->vert[i]->time_ptr = *source.host_ele->slow_ptr * distance(*source.host_ele->vert[i], source); } // declare a source point and calculate seis_point3d_tet receiver; receiver.set(point3dc(995.0, 250.0, 495.0), 1); receiver.find_host_element(fmm_ele.get(), fmm_ele.size()); std::vector rece_node; for (int i = 0; i < 4; i++) { rece_node.push_back(receiver.host_ele->vert[i]); } array jn_temp(fmm_ele.size()); array time_ele_grad(fmm_ele.size(), 0.0); sparray2d jn(fmm_node.size(), fmm_ele.size(), 0.0); std::vector wave_front; std::vector march_record; double temp_val; for (int i = 0; i < 4; i++) { //初始化前四个梯度值 //对元素的慢度求梯度即为源到顶点的距离 temp_val= distance(*source.host_ele->vert[i], source); jn.at(source.host_ele->vert[i]->id)->set(source.host_ele->id, temp_val); } // calculate clock_t start = clock(); fmm3d_forward_tetrahedron(&fmm_node, &fmm_ele, &wave_front, &march_record, &rece_node, &jn, &jn_temp); clock_t end = clock(); std::cout << "FMM's time: " << 1000.0*(end - start)/(double)CLOCKS_PER_SEC << " ms" << std::endl; double r[4], w_sum; for (int i = 0; i < 4; i++) { r[i] = distance(*receiver.host_ele->vert[i], receiver) + GCTL_ZERO; } w_sum = 1.0/r[0] + 1.0/r[1] + 1.0/r[2] + 1.0/r[3]; receiver.time = *receiver.host_ele->vert[0]->time_ptr/(r[0]*w_sum) + *receiver.host_ele->vert[1]->time_ptr/(r[1]*w_sum) + *receiver.host_ele->vert[2]->time_ptr/(r[2]*w_sum) + *receiver.host_ele->vert[3]->time_ptr/(r[3]*w_sum); for (int i = 0; i < 4; i++) { jn.at(receiver.host_ele->vert[i]->id)->export_dense(time_ele_grad, 1.0/(r[i]*w_sum), gctl::AppendVal); } for (int i = 0; i < node_time.size(); i++) { if (node_time[i] == GCTL_BDL_MAX) { node_time[i] = NAN; } } std::cout << "Receiver's time = " << receiver.time << std::endl; save_gmsh_data(outfile, "Arrival time", node_time.get(), node_time.size(), NodeData, gctl::NotPacked); save_gmsh_data(outfile, "receiver's gradient", time_ele_grad.get(), time_ele_grad.size(), ElemData, gctl::NotPacked); outfile.close(); } catch(std::exception &e) { GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, 0, 0); } }