/******************************************************** * ██████╗ ██████╗████████╗██╗ * ██╔════╝ ██╔════╝╚══██╔══╝██║ * ██║ ███╗██║ ██║ ██║ * ██║ ██║██║ ██║ ██║ * ╚██████╔╝╚██████╗ ██║ ███████╗ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ * Geophysical Computational Tools & Library (GCTL) * * Copyright (c) 2022 Yi Zhang (yizhang-geo@zju.edu.cn) * * GCTL is distributed under a dual licensing scheme. You can redistribute * it and/or modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, either version 2 * of the License, or (at your option) any later version. You should have * received a copy of the GNU Lesser General Public License along with this * program. If not, see . * * If the terms and conditions of the LGPL v.2. would prevent you from using * the GCTL, please consider the option to obtain a commercial license for a * fee. These licenses are offered by the GCTL's original author. As a rule, * licenses are provided "as-is", unlimited in time for a one time fee. Please * send corresponding requests to: yizhang-geo@zju.edu.cn. Please do not forget * to include some description of your company and the realm of its activities. * Also add information on how to contact you by electronic and paper mail. ******************************************************/ #include "gctl/core.h" #include "gctl/io.h" #include "gctl/seismic.h" using namespace gctl; int main(int argc, char const *argv[]) { try { std::string mesh_file = "../data/fmm2d/sample_mesh.1"; std::string mod_file = "../data/fmm2d/sample_model.txt"; // read triangular mesh's vertice and elements array mesh_node; array mesh_ele; array node_boundary; read_Triangle_node(mesh_file, mesh_node, gctl::Packed, &node_boundary); read_Triangle_element(mesh_file, mesh_ele, mesh_node); array fmm_node; array fmm_ele; array node_time(mesh_node.size()); array mesh_slow; text_descriptor desc; desc.head_num_ = 1; get_data_column(mod_file, {&mesh_slow}, {1}, desc); create_fmm_mesh(mesh_node, mesh_ele, node_time, mesh_slow, fmm_node, fmm_ele); // 使用外部临时数组与向量 array temp_index(fmm_node.size()); array jn_temp(fmm_ele.size()); array time_ele_grad(fmm_ele.size()); sparray2d jn(fmm_node.size(), fmm_ele.size(), 0.0); std::vector wave_front; std::vector march_record; // save to gmsh file std::ofstream outfile; open_outfile(outfile, mesh_file, ".msh"); save2gmsh(outfile, mesh_ele, mesh_node, gctl::NotPacked); // declare a new seismic point seis_point2d_tri source_1; source_1.set(point2dc(40.0, 98.0), 0); seis_point2d_tri receiver_1; // declare a receiver point and a gradient array and calculate receiver_1.set(point2dc(125.0, 98.0), 1); std::vector refl_nodes; for (int i = 0; i < fmm_node.size(); i++) { if (node_boundary[i] && fabs(fmm_node[i].y) < 1e-6) { refl_nodes.push_back(fmm_node.get(i)); } } source2receiver_reflect(&fmm_node, &fmm_ele, &source_1, &receiver_1, &refl_nodes, &time_ele_grad, &wave_front, &march_record, &jn, &jn_temp, &temp_index); std::cout << "receiver's time = " << receiver_1.time << std::endl; save_gmsh_data(outfile, "Elements' gradient", time_ele_grad.get(), time_ele_grad.size(), ElemData, gctl::NotPacked); receiver_1.set(point2dc(235.0, 98.0), 1); source2receiver_reflect(&fmm_node, &fmm_ele, &source_1, &receiver_1, &refl_nodes, &time_ele_grad, &wave_front, &march_record, &jn, &jn_temp, &temp_index); std::cout << "receiver's time = " << receiver_1.time << std::endl; save_gmsh_data(outfile, "Elements' gradient 2", time_ele_grad.get(), time_ele_grad.size(), ElemData, gctl::NotPacked); outfile.close(); } catch(std::exception &e) { GCTL_ShowWhatError(e.what(), GCTL_ERROR_ERROR, 0, 0, 0); } return 0; }