Files
gguf-tools/gguflib.c
Juarez Bochi e5cdcec626 Fix some typos
2024-01-03 07:34:12 -05:00

692 lines
27 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <errno.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include "gguflib.h"
#include "fp16.h"
/* ============================ Low level functions ========================= */
/* GGUF value ID to name lookup table. */
const char *gguf_value_name[] = {
"uint8", "int8", "uint16", "int16", "uint32", "int32",
"float32", "bool", "string", "array", "uint64", "int64",
"float64"
};
/* GGUF tensor type to features lookup table. */
struct gguf_tensor_type_features {
char *name;
uint32_t items_per_block;
uint32_t bytes_per_block;
} gguf_tensor_type_features[] = {
{"f32", 1, 4},
{"f16", 1, 2},
{"q4_0", 32, 18},
{"q4_1", 32, 20},
{"q4_2 deprecated", 0, 0},
{"q4_3 deprecated", 0, 0},
{"q5_0", 32, 22},
{"q5_1", 32, 24},
{"q8_0", 32, 34},
{"q8_1", 32, 40},
{"q2_k", 256, 82},
{"q3_k", 256, 110},
{"q4_k", 256, 144},
{"q5_k", 256, 176},
{"q6_k", 256, 210},
{"q8_k", 256, 292},
};
/* Return the value type name given the type ID. */
const char *gguf_get_value_type_name(uint32_t type) {
if (type >= sizeof(gguf_value_name)/sizeof(char*)) return "unknown";
return gguf_value_name[type];
}
/* Return the tensor type name given the type ID. */
const char *gguf_get_tensor_type_name(uint32_t type) {
if (type >= sizeof(gguf_tensor_type_features)/sizeof(gguf_tensor_type_features[0])) return "unknown";
return gguf_tensor_type_features[type].name;
}
/* Return the tensor type features, or NULL if the type ID is out of range. */
struct gguf_tensor_type_features *gguf_get_tensor_type_features(uint32_t type) {
if (type >= sizeof(gguf_tensor_type_features)/sizeof(gguf_tensor_type_features[0])) return NULL;
return &gguf_tensor_type_features[type];
}
/* Return the length of the value pointed by 'val' of type 'type'.
* For the array type the length can't be inferred without consuming
* it, so 0 is returned. */
uint64_t gguf_value_len(uint32_t type, union gguf_value *val) {
uint64_t valuelen = 0;
switch(type) {
case GGUF_VALUE_TYPE_BOOL:
case GGUF_VALUE_TYPE_UINT8:
case GGUF_VALUE_TYPE_INT8:
valuelen = 1; break;
case GGUF_VALUE_TYPE_UINT16:
case GGUF_VALUE_TYPE_INT16:
valuelen = 2; break;
case GGUF_VALUE_TYPE_UINT32:
case GGUF_VALUE_TYPE_INT32:
case GGUF_VALUE_TYPE_FLOAT32:
valuelen = 4; break;
case GGUF_VALUE_TYPE_UINT64:
case GGUF_VALUE_TYPE_INT64:
case GGUF_VALUE_TYPE_FLOAT64:
valuelen = 8; break;
case GGUF_VALUE_TYPE_STRING:
valuelen = 8+val->string.len; break;
}
return valuelen;
}
/* =============================== GGUF file API ============================ */
/* Open a GGUF file and return a parsing context. */
gguf_ctx *gguf_init(const char *filename) {
int fd = open(filename,O_RDWR|O_APPEND);
if (fd == -1) return NULL;
/* Mapping successful. We can create our context object. */
gguf_ctx *ctx = malloc(sizeof(*ctx));
memset(ctx,0,sizeof(*ctx));
ctx->fd = fd;
ctx->alignment = 32; // Default alignment of GGUF files.
ctx->data_off = 0; // Set later.
if (gguf_remap(ctx) == 0) {
gguf_end(ctx);
return NULL;
}
gguf_rewind(ctx);
return ctx;
}
/* Set the context to read the first key-value entry in the GGUF
* file and then all the rest. Is used when creating a new context
* and also when you want to restart scanning the key-value
* items in the file. */
void gguf_rewind(gguf_ctx *ctx) {
ctx->off = sizeof(struct gguf_header);
ctx->left_kv = ctx->header->metadata_kv_count;
ctx->left_tensors = ctx->header->tensor_count;
}
/* map or re-map the GGUF file inside the context pointers to
* header and data, also calculating the file length. This is
* used when creating a context, but also after the user write
* to the file extending it, and requires to view again the
* whole updated file.
*
* Return 1 on success, 0 on error. */
int gguf_remap(gguf_ctx *ctx) {
struct stat sb;
/* Unmap if the file was already memory mapped. */
if (ctx->data) munmap(ctx->data,ctx->size);
/* Get the size of the file to map, then map it. */
if (fstat(ctx->fd,&sb) == -1) return 0;
void *mapped = mmap(0,sb.st_size,PROT_READ|PROT_WRITE,MAP_SHARED,ctx->fd,0);
if (mapped == MAP_FAILED) return 0;
/* Minimal sanity check... */
if (sb.st_size < (signed)sizeof(struct gguf_header) ||
memcmp(mapped,"GGUF",4) != 0)
{
errno = EINVAL;
return 0;
}
ctx->data = mapped;
ctx->header = mapped;
ctx->size = sb.st_size;
return 1;
}
/* Cleanup needed after gguf_init(), to terminate the context
* and cleanup resources. */
void gguf_end(gguf_ctx *ctx) {
if (ctx == NULL) return;
if (ctx->data) munmap(ctx->data,ctx->size);
close(ctx->fd);
free(ctx);
}
/* Parse the next key. Returns key information into 'key'.
* The function return value is 1 is a key was returned, or 0
* if there are no longer keys to process in this GGUF file. */
int gguf_get_key(gguf_ctx *ctx, gguf_key *key) {
if (ctx->left_kv == 0) return 0;
ctx->left_kv--;
struct gguf_string *str = (struct gguf_string*) (ctx->data+ctx->off);
key->namelen = str->len;
key->name = str->string;
uint32_t *type = (uint32_t*) (ctx->data+ctx->off+8+str->len);
key->type = *type;
ctx->off += 8+str->len+4; // Skip prefixed len + string + type.
key->val = (void*)(ctx->data+ctx->off);
/* Update the context with the alignment data, if needed. */
const char *alignment_key = "general.alignment";
if (key->type == GGUF_VALUE_TYPE_UINT32 &&
key->namelen == strlen(alignment_key) &&
memcmp(alignment_key, key->name, key->namelen) == 0)
{
ctx->alignment = key->val->uint32;
}
return 1;
}
/* Skip all the key values pairs in the GGUF files to get to the
* tensors information segment. */
void gguf_skip_key_values_section(gguf_ctx *ctx) {
gguf_key key;
while (gguf_get_key(ctx,&key))
gguf_do_with_value(ctx,key.type,key.val,NULL,0,0,NULL);
}
/* Given an offset or a length, returns the padding needed to align it
* to ctx->alignment. */
uint64_t gguf_get_alignment_padding(uint64_t alignment, uint64_t offset) {
return (alignment - (offset % alignment)) % alignment;
}
/* Set the data section offset. This function must be called exactly when
* all the key-values are consumed, in the context of the first call of
* gguf_get_tensor(): this way we will be able to return tensor offsets
* as absolute positions and pointers to the mmapped file. */
void gguf_set_data_offset(gguf_ctx *ctx) {
assert(ctx->left_kv == 0 && ctx->left_tensors == ctx->header->tensor_count);
uint64_t offset = ctx->off;
for (uint32_t j = 0; j < ctx->left_tensors; j++) {
struct gguf_string *str = (struct gguf_string*) (ctx->data+offset);
offset += 8+str->len; // Skip prefixed len + string
uint32_t *num_dim = (uint32_t*)(ctx->data+offset);
offset += 4; // Skip num dimentions.
offset += 8*(*num_dim); // Skip dimensions.
offset += 4; // Skip tensor type.
offset += 8; // Skip tensor offset.
}
uint64_t padding = gguf_get_alignment_padding(ctx->alignment,offset);
ctx->data_off = offset + padding;
}
/* Parse the next tensor info data. Returns information into 'tensor'.
* The function return value is 1 if a tensor was returned, or 0
* if there are no longer tensors to process in this GGUF file or if
* there are still key-value pairs to process before getting into the
* tensors section.
*
* The first time this function is called, as a side effect it will
* set ctx->data_off to return tensors with absolute offsets.
*
* When 0 is returned, the tensor name is set to NULL, so that after
* a while() loop scanning tensors for a given condition, the caller
* can easily understand if the search terminated because the loop
* was exit or because all the entries were consumed. */
int gguf_get_tensor(gguf_ctx *ctx, gguf_tensor *tensor) {
if (ctx->left_tensors == 0 || ctx->left_kv != 0) {
tensor->name = NULL;
return 0;
}
/* We want to return tensor data with offsets relative to the start
* of the file, so that the user of the API is able to access tensors
* as it iterates over them. To do so, we need to perform a full
* scan if this is the first tensor info we are reading. */
if (ctx->data_off == 0) gguf_set_data_offset(ctx);
ctx->left_tensors--;
struct gguf_string *str = (struct gguf_string*) (ctx->data+ctx->off);
ctx->off += 8+str->len; // Skip prefixed len + string.
tensor->namelen = str->len;
tensor->name = str->string;
uint32_t *num_dim = (uint32_t*) (ctx->data+ctx->off);
ctx->off += 4; // Skip number of dimensions.
tensor->ndim = *num_dim;
assert(tensor->ndim <= GGUF_TENSOR_MAX_DIM);
/* Read the dimentions: all the unused dimensions are set to 1. */
tensor->num_weights = 1;
for (uint32_t j = 0; j < tensor->ndim; j++) {
if (j < tensor->ndim) {
uint64_t *dim = (uint64_t*) (ctx->data+ctx->off);
ctx->off += 8; // Skip dimension size.
tensor->dim[j] = *dim;
tensor->num_weights *= *dim;
} else {
tensor->dim[j] = 1;
}
}
uint32_t *type = (uint32_t*) (ctx->data+ctx->off);
ctx->off += 4; // Skip tensor type.
tensor->type = *type;
uint64_t *offset = (uint64_t*) (ctx->data+ctx->off);
ctx->off += 8; // Skip tensor offset.
tensor->offset = ctx->data_off + *offset;
tensor->weights_data = ctx->data + tensor->offset;
/* To accurately calculate the bytes used by this tensor on the GGUF
* file, we need to take into account that quantization methods store
* tensors as block of N weights. So first of all we need to understand
* the number of padding weights (since the last block may have just
* fewer weights stored inside, but still requires to be stored to its full
* length). Then we can do the math to see how many blocks we need, and
* multiply by the block size to obtain the final total size. */
struct gguf_tensor_type_features *tf;
tf = gguf_get_tensor_type_features(tensor->type);
uint64_t weights_padding = gguf_get_alignment_padding(tf->items_per_block,tensor->num_weights);
tensor->bsize = ((tensor->num_weights+weights_padding) / tf->items_per_block) * tf->bytes_per_block;
return 1;
}
/* This function can be called after gguf_get_key(), since the context
* offset will be in the position of a value.
*
* The function will process the value, including nested values (in the
* case of an array value), and for each value will call the specified
* callback. As a side effect of calling this function, the context offset
* is advanced to consume the value.
*
* If the callback is set to NULL, no callback will be called,
* but the value will be consumed, so that it will be possible
* to call gguf_get_key() or gguf_get_tensor() to continue reading
* the file.
*
* When the callback is called, it gets the argument 'privdata' and 'in_array'
* as passed to this function. This is useful if the callback needs
* to take state (for pretty printing or alike) and to know if the
* elements it is processing belong to an array.
*
* The value of 'in_array' is the 1-based index of the element being
* processed.
*
* In the case of arrays, callbacks are also called with the special
* type ARRAY_START / ARRAY_END at the start/end of the array
* processing. */
void gguf_do_with_value(gguf_ctx *ctx, uint32_t type, union gguf_value *val,
void *privdata, uint64_t in_array, uint64_t array_len,
void(*callback)(void *privdata, uint32_t type,
union gguf_value *val, uint64_t in_array,
uint64_t array_len))
{
if (type == GGUF_VALUE_TYPE_ARRAY) {
uint32_t etype; // Elements type.
uint64_t len; // Number of elements.
etype = val->array.type;
len = val->array.len;
//exit(1);
ctx->off += 4+8; // Skip elements type / array length.
if (callback)
callback(privdata,GGUF_VALUE_TYPE_ARRAY_START,val,in_array,len);
for (uint64_t j = 0; j < len; j++) {
val = (union gguf_value*)(ctx->data+ctx->off);
gguf_do_with_value(ctx,etype,val,privdata,j+1,len,callback);
/* As a side effect of calling gguf_do_with_value() ctx->off
* will be update, so 'val' will be set to the next element. */
}
if (callback)
callback(privdata,GGUF_VALUE_TYPE_ARRAY_END,NULL,in_array,len);
} else {
if (callback)
callback(privdata,type,val,in_array,array_len);
ctx->off += gguf_value_len(type,val);
}
}
struct gguf_print_options {
uint64_t max_array_items; // Don't print more than N items.
};
/* Print a GGUF value. 'privdata' is used to pass guff_print_options and
* may be NULL if no options are provided.
*
* The function is designed to be used as a callback of gguf_do_with_value(). */
void gguf_print_value_callback(void *privdata, uint32_t type, union gguf_value *val, uint64_t in_array, uint64_t array_len) {
struct gguf_print_options *po = privdata;
if (po && po->max_array_items && in_array > po->max_array_items) {
if (in_array-1 == po->max_array_items)
printf("... %llu more items of %llu", array_len-in_array+1,
array_len);
return;
}
switch (type) {
case GGUF_VALUE_TYPE_ARRAY_START:
printf("["); break;
case GGUF_VALUE_TYPE_ARRAY_END:
printf("]"); break;
case GGUF_VALUE_TYPE_UINT8:
printf("%u", val->uint8); break;
case GGUF_VALUE_TYPE_INT8:
printf("%d", val->int8); break;
case GGUF_VALUE_TYPE_UINT16:
printf("%u", val->uint16); break;
case GGUF_VALUE_TYPE_INT16:
printf("%d", val->int16); break;
case GGUF_VALUE_TYPE_UINT32:
printf("%u", val->uint32); break;
case GGUF_VALUE_TYPE_INT32:
printf("%d", val->int32); break;
case GGUF_VALUE_TYPE_FLOAT32:
printf("%f", val->float32); break;
case GGUF_VALUE_TYPE_BOOL:
if (val->boolval == 0 || val->boolval == 1)
printf("%s", val->boolval ? "true" : "false");
else
printf("Invalid boolean value %d", val->boolval);
break;
case GGUF_VALUE_TYPE_STRING:
printf("%.*s", (int)val->string.len, val->string.string); break;
case GGUF_VALUE_TYPE_UINT64:
printf("%llu", val->uint64); break;
case GGUF_VALUE_TYPE_INT64:
printf("%lld", val->int64); break;
case GGUF_VALUE_TYPE_FLOAT64:
printf("%lf", val->float64); break;
default:
printf("Unknown type\n");
break;
}
if (in_array && in_array != array_len) printf(", ");
}
/* Print the current value, including arrays. As a side effect
* the value will be consumed from the context, that will now point
* to the next item in the GGUF file.
*
* If 'full' is true, in the case of arrays, the whole array is printed,
* otherwise just the first few elements. */
void gguf_print_value(gguf_ctx *ctx, uint32_t type, union gguf_value *val, int full) {
struct gguf_print_options po;
po.max_array_items = full ? 0 : 30;
gguf_do_with_value(ctx,type,val,&po,0,0,gguf_print_value_callback);
}
/* ============================= GGUF writing API ========================== */
/* Create an empty GGUF file with no key-value pairs nor tensors.
* The file can be extended by using the APIs to add tensors and
* keys.
*
* On success the context with the file already loaded is returned,
* otherwise NULL is returned. */
gguf_ctx *gguf_create(const char *filename) {
struct gguf_header hdr;
memcpy(&hdr.magic,"GGUF",4);
hdr.version = 3;
hdr.tensor_count = 0;
hdr.metadata_kv_count = 0;
FILE *fp = fopen(filename,"wx");
if (fp == NULL) return NULL;
if (fwrite(&hdr,1,sizeof(hdr),fp) != sizeof(hdr)) {
fclose(fp);
return NULL;
}
fclose(fp);
return gguf_init(filename);
}
/* Low level API to append some key-value data to the GGUF file identified
* by the context 'ctx'. It's up to the caller to provide a well-formatted
* value of the specified type in 'val'. The len is the raw bytes length of
* the specified value. Higher level APIs use this one to create fields with
* different numerical values, strings, ...
*
* On success the function returns 1. Otherwise 0.
* The function fails and returns 0 with errno set to EINVAL if the
* tensors count in the header is non-zero: we can't append key-value
* data after the first tensor was emitted. */
int gguf_append_kv(gguf_ctx *ctx, const char *keyname, uint64_t keylen, uint32_t type, void *val, uint64_t len) {
if (ctx->header->tensor_count != 0) {
errno = EINVAL;
return 0;
}
if (write(ctx->fd,&keylen,sizeof(keylen)) != sizeof(keylen)) return 0;
if (write(ctx->fd,keyname,keylen) != (ssize_t)keylen) return 0;
if (write(ctx->fd,&type,sizeof(type)) != sizeof(type)) return 0;
if (write(ctx->fd,val,len) != (ssize_t)len) return 0;
gguf_remap(ctx);
ctx->header->metadata_kv_count++;
return 1;
}
/* Append tensor metadata (but not the actual tensor weights data) to the
* GGUF file identified by 'ctx'. */
int gguf_append_tensor_info(gguf_ctx *ctx, const char *tensorname, uint64_t namelen, uint32_t num_dim, uint64_t *dim, uint32_t type, uint64_t offset)
{
if (write(ctx->fd,&namelen,sizeof(namelen)) != sizeof(namelen)) return 0;
if (write(ctx->fd,tensorname,namelen) != (ssize_t)namelen) return 0;
if (write(ctx->fd,&num_dim,sizeof(num_dim)) != sizeof(num_dim)) return 0;
for (uint32_t j = 0; j < num_dim; j++) {
if (write(ctx->fd,&dim[j],sizeof(uint64_t)) != sizeof(uint64_t))
return 0;
}
if (write(ctx->fd,&type,sizeof(type)) != sizeof(type)) return 0;
if (write(ctx->fd,&offset,sizeof(offset)) != sizeof(offset)) return 0;
gguf_remap(ctx);
ctx->header->tensor_count++;
return 1;
}
/* Append tensor data enforcing the GGUF file aligment.
* The function will take care to add the padding required to start writing
* the tensor at an alignment multiple. */
int gguf_append_tensor_data(gguf_ctx *ctx, void *tensor, uint64_t tensor_size) {
char padding_data[1024] = {0};
assert(sizeof(padding_data) >= ctx->alignment);
uint64_t padding = gguf_get_alignment_padding(ctx->alignment,ctx->size);
if (write(ctx->fd,padding_data,padding) != (ssize_t)padding) return 0;
if (write(ctx->fd,tensor,tensor_size) != (ssize_t)tensor_size) return 0;
gguf_remap(ctx);
return 1;
}
/* ============================ GGUF dequantization ========================= */
/* Convert the specified tensor (quantized or not) into an array of
* floats. The array is allocated with malloc(). If the tensor is already
* in FP32 floats format, it is just memcpy()-ed to the destination array.
*
* On OOM, NULL is returned. If the tensor format is not yet supported,
* NULL is returned as well, but errno is set to EINVAL. */
float *gguf_tensor_to_float(gguf_tensor *tensor) {
struct gguf_tensor_type_features *tf =
gguf_get_tensor_type_features(tensor->type);
uint64_t block_size = tf->bytes_per_block;
float *f = malloc(tensor->num_weights*sizeof(float));
if (tensor->type == GGUF_TYPE_F32) {
memcpy(f, tensor->weights_data, tensor->num_weights*sizeof(float));
} else if (tensor->type == GGUF_TYPE_F16) {
uint64_t i = 0; // i-th weight to dequantize.
uint16_t *w16 = (uint16_t*) tensor->weights_data;
while(i < tensor->num_weights) {
f[i] = from_half(w16[i]);
i++;
}
} else if (tensor->type == GGUF_TYPE_Q8_0) {
/* Very simple layout: |16 bit scale|32 x 8bit weights|
* Each weight is scale * quantized_weight[0..31] */
int8_t *block = (int8_t*)tensor->weights_data;
uint64_t i = 0; // i-th weight to dequantize.
while(i < tensor->num_weights) {
/* For each block get the scale and convert all the
* weights in the block. */
float scale = from_half(*((uint16_t*)block));
for (uint32_t j = 0; j < tf->items_per_block; j++) {
f[i++] = block[j+2] * scale; // j+2 to skip the scale bytes.
if (i == tensor->num_weights) break;
}
block += block_size; // Go to the next block.
}
} else if (tensor->type == GGUF_TYPE_Q4_K) {
uint8_t *block = (uint8_t*)tensor->weights_data;
uint64_t i = 0; // i-th weight to dequantize.
while(i < tensor->num_weights) {
/* Q4_K super-blocks have 256 total weights, split in 8 sub-block.
* Each 8 sub-blocks have a different set of scales/mins, so
* there are 16 total values for scales/mins, but the scales/mins
* are also quantized (6 bits each) using two different scales:
* scale_of_scales and scale_of_mins, that are two FP16 values
* at the start of the super block, so:
*
* |FP16 s_of_scales | +
* |FP16 s_of_mins | +
* |16 6 bit integers d,m pairs, one per sub-block of 32 ele | +
* |256 x 4bit weights|
*
* Each quantized weight 'q' is restored as:
*
* w = q * scale - min;
*/
float scales_scale = from_half(*((uint16_t*)block));
float mins_scale = from_half(*((uint16_t*)(block+2)));
block += 4;
/* Extract the 16 x 6 bit values scales-mins pairs. The
* encoding of those values is odd because of performance
* reasons:
*
* dddddddd dddddddd dddddddd dddddddd mmmmmmmm mmmmmmmm
* 44000000|55111111|66222222|77333333|44000000|55111111
*
* mmmmmmmm mmmmmmmm mmmmdddd mmmmdddd mmmmdddd mmmmdddd
* 66222222|77333333|44444444|55555555|66666666|77777777
*
* In the above diagram you can see the 12 bytes and the
* scales/mins 6 bits encodings. */
/* Scale scales/mins. */
float scales[8], mins[8];
for (int j = 0; j < 8; j++) {
uint8_t d,m;
if (j < 4) {
d = block[j] & 63;
m = block[j+4] & 63;
} else {
d = (block[j+4] & 0xF) | ((block[j-4] >> 6) << 4);
m = (block[j+4] >> 4) | ((block[j-0] >> 6) << 4);
}
scales[j] = d * scales_scale;
mins[j] = m * mins_scale;
}
block += 12; // Seek 4-bit weights start.
/* Finally we can extract the 256 weights.
* We process two blocks per time, because each
* 32 bytes have 64 weights stored like this:
* First 32 weights of the first block are the higher 4
* bits of each byte. Second 32 weights of the second
* block are lower 4 bits of each byte. */
for (uint32_t b = 0; b < 8; b += 2) {
float scale = scales[b];
float min = mins[b];
/* First set: higher bits. */
for (uint32_t j = 0; j < 32; j++) {
uint8_t w = block[j] & 0xf;
f[i++] = w * scale - min;
if (i == tensor->num_weights) return f;
}
/* Second set: lower bits. */
for (uint32_t j = 0; j < 32; j++) {
uint8_t w = block[j] >> 4;
f[i++] = w * scale - min;
if (i == tensor->num_weights) return f;
}
block += 32; // Skip the two processed blocks.
}
}
} else if (tensor->type == GGUF_TYPE_Q6_K) {
uint8_t *block = (uint8_t*)tensor->weights_data;
uint64_t i = 0; // i-th weight to dequantize.
while(i < tensor->num_weights) {
/* Q6_K super-blocks have 256 total weights, split in 16 sub-block
* of 16 elements. There are no mins, just scales. Each sub-block
* have a block-specific scale quantized at 8 bits via a single
* 16-bit main scale-of-scales.
*
* |128 bytes of lower 4 bits of quants| +
* |64 bytes of lower 2 bits of quants| +
* |16 bytes of 8-bit block scales | +
* |A single FP16 value: the scale of the scales above |
*
* Let's call "L" the lower 4 bits array (128 bytes)
* and "H" the higher 2 bits array (64 bytes)
*
* Values are logically encoded in two 128 weights clusters
* where the first cluster is the first 64 bytes of "L" and
* the first 32 bytes of "H".
*
* Higher bits of the i-th weight from 0 to 63 are stored in the
* lower 4 bits of L[i], while higher bits of the i-th weight
* from 64 to 127 are stored in the higher bits of L[i-64]:
*
* L = |64640000|65650101|66660202|...
*
* So this actually is: w_low = (L[i%64] >> i/64*4) & 15
*
* H = |96643200|97653301|98663402|...
*
* Higher bits of the i-th weight are arranged like that:
*
* From 0 to 31, bits 0,1 of H[i]
* From 32 to 63, bits 3,2 of H[i-32]
* From 64 to 95, bits 5,4 of H[i-64]
* From 96 to 127, bits 7,6 of H[i-96]
*
* So this actually is: w_high = ((H[i%32] >> i/32*2) & 3) << 2
* The same is true with the next 128 weights cluster, but
* everything is relative to the second half of H and L.
*
* Finally, there is to extract the scale from the
* 16 blocks scales array. Scales are just sequential,
* so the i-th weight uses the scale[i/16].
*
* Important: In Q6_K the 6-bit quants are wisely stored
* as unsigned integers + 32, so that there is no need to
* do sign bit extension in order to convert the 6-bit value
* into 8 bit value. Instead the values from -32 to 31 are
* remapped in the 0-63 range (just adding 32).
*/
float super_scale = from_half(*((uint16_t*)(block+128+64+16)));
uint8_t *L = block;
uint8_t *H = block+128;
int8_t *scales = (int8_t*)block+128+64;
for (int cluster = 0; cluster < 2; cluster++) {
for (uint64_t j = 0; j < 128; j++) {
f[i] = (super_scale * scales[j/16]) *
((int8_t)
((((L[j%64] >> (j/64*4)) & 0xF) |
(((H[j%32] >> (j/32*2)) & 3) << 4)))-32);
i++;
if (i == tensor->num_weights) return f;
}
L += 64;
H += 32;
scales += 8;
}
block += 128+64+16+2; // Go to the next block.
}
} else {
errno = EINVAL;
return NULL;
}
return f;
}