98 lines
23 KiB
Plaintext
98 lines
23 KiB
Plaintext
|
|
{
|
|||
|
|
"cells": [
|
|||
|
|
{
|
|||
|
|
"cell_type": "markdown",
|
|||
|
|
"metadata": {},
|
|||
|
|
"source": [
|
|||
|
|
"\n",
|
|||
|
|
"# A simple plotting example\n",
|
|||
|
|
"\n",
|
|||
|
|
"A plotting example with a few simple tweaks\n"
|
|||
|
|
]
|
|||
|
|
},
|
|||
|
|
{
|
|||
|
|
"cell_type": "code",
|
|||
|
|
"execution_count": 2,
|
|||
|
|
"metadata": {
|
|||
|
|
"collapsed": false,
|
|||
|
|
"jupyter": {
|
|||
|
|
"outputs_hidden": false
|
|||
|
|
}
|
|||
|
|
},
|
|||
|
|
"outputs": [
|
|||
|
|
{
|
|||
|
|
"data": {
|
|||
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAE5CAYAAACHy8exAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAALEwAACxMBAJqcGAAAPTxJREFUeJzt3XlQlHeaB/Bvc4MKCiKCIKKIQEPTyOGRxDPmUGOiSWV1Jzu6amUziTVJ7SaTTLam3JndXJvMTIxJZSprxh3dRCdxos4YIYN4K4rctyKXcgnKfUP3b/9wYECg+23eft/f+3Y/n6pUhdjP+zySF37d7/F9NYwxBkIIIUQgB94DEEIIURdaOAghhFiEFg5CCCEWoYWDEEKIRWjhIIQQYhFaOAghhFjEifcApkyfPh1z5syZcH1nZycmTZpE9VRP9VRvd/ViVVZW4u7du2P/IVOwuLg4UfVnzpyheqqneqq3y3qxTP3+pUNVhBBCLEILByGEEIvQwkEIIcQitHAQQgixCC0chBBCLEILByGEEIvQwkEIIcQitHAQQgixCC0chBBCLEILByGEEIsoOqvKFuXk5ODevXtwcHAAYwyMMSxduhTu7u68RyN2oKamBtevX4dGo4FGo8HAwABCQkIwb9483qMRFaGFQyZ37txBeno6EhMTodfrh/67wWDAhQsX4ObmhsWLF/MbkNg0g8GAU6dOYebMmVi1atWIPystLcWJEyewevVqegNDBKFDVTK4fv06bt68iaeeegp+fn4j/szR0RErVqxAUFAQkpKSwBjjNCWxVb29vTh27BhWrFiBmJiYUX8+f/58rF27FikpKWhtbeUwIVEbWjgkVlFRgebmZjz00EMmXzdr1iwsXboUKSkpMk1G7IHBYMCJEyewceNGuLq6jvs6BwcHPPXUU7hw4QLa29tlnJCoES0cEurs7ERZWZngQ1BeXl7QarVIS0uTeDJiL06ePIn169fDwcH8j7pGo8G6detw6tQp+uRLTKKFQyKMMWRnZ2P16tUW1c2aNQsuLi6oqamRaDJiL4qKipCYmGjyk8aDNBoNHn30UaSmpko4GVE7WjgkcvHiRej1emg0Gotr4+LikJWVBaPRKMFkxB60tLSgv79/1Dk1IaZMmQI/Pz/U19dLMBmxBbRwSKCtrQ2MMUyePHnC21i1ahXy8vKsOBWxJxcvXoROp5twfXR0NCoqKuiQFRkTLRwSuHjxIh555BFR2xh81nBHR4c1RiJ2pKioCFFRURP6tDtcdHQ0Ll++bKWpiC2hhcPKqqqqMGfOHNE/tAAQExODCxcuWGEqYk8G90GxJk+ejK6uLgwMDIgfitgUqywcycnJWLBgAUJDQ/H++++P+vPm5mZs3LgROp0OiYmJKCgosEZbRSouLkZkZKRVtqXRaDB9+nTcvXvXKtsjtm/wJlNrWbZsGc6fP2+17RHbIHrhMBgMeOWVV5CUlISioiIcOnQIRUVFI17z7rvvQq/XIy8vDwcOHMCrr74qtq0ilZeXIyQkxKrbjI+PR0ZGhlW3SWxXc3MzfHx8rLa9wSuy+vv7rbZNon6iF4709HSEhoZi7ty5cHFxwebNm3H8+PERrykqKhq6LDU8PByVlZW4c+eO2NaKU1paigULFlh1mxqNBlOnTkVzc7NVt0tsT1ZWFmJjY62+3YcffhiXLl2y+naJemmYyMsmjhw5guTkZOzbtw8AcPDgQVy9ehWffvrp0Gvefvtt9PT04De/+Q3S09OxdOlSXL16FXFxcaO298UXX+CLL74AAFRXV+Pw4cMTnq2jo0PUlU2W1Dc1NaGpqQmhoaFW788Yw7Vr1yw+BCHn35/q+dc/eJjKmv2vXbuG+Ph4i87dqe37Z2v1Yr3++uvjH+1gIn3zzTdsx44dQ18fOHCA7dq1a8RrWltb2bZt21hMTAx74YUXWHx8PMvJyTG77bi4OFGznTlzRrb6H374QdL+p06dYv39/ROuF9uf6pVdf+PGDVZeXi5Z/5aWFpaWljbherH9qV5+pn7/ik7HDQwMxO3bt4e+rq6uRkBAwIjXeHp6Yv/+/YMLFUJCQqx+LoCnnp4ei+7OnYiHHnoIly5dwvLlyyXtQ9SpsrISa9askWz7Xl5elGFFhog+x5GQkIDS0lJUVFSgr68Phw8fxoYNG0a8pqWlBX19fQCAffv2YdmyZfD09BTbWjHS0tKwdOlSSXu4ubmhp6dH0h5EnTo7O4fu+5HS7NmzcevWLcn7EOUTvXA4OTnh008/xeOPP46IiAg8//zz0Gq1+N3vfoff/e53AO5foqrVahEeHo6kpCTs2bNH9OBKMjAwAGdnZ8n7hIeHo6SkRPI+RF2uXLmCRYsWSd5nwYIFuHHjhuR9iPJZ5UFOa9euxdq1a0f8t5deemno35csWYLS0lJrtFKcmzdvyvb0tODgYKSkpCA8PFyWfkQdGGNwdHSUpZeTkxP6+/tleaNElIvuHBepoqICc+fOla2fs7MzXVNPhpSUlCAsLEy2fosXL8bVq1dl60eUiRYOEQwGg2zv9AYtXryYntdBhlRXV2P27Nmy9aNzbQSghUMUa8c7COHm5jZ0oQGxbwMDA4Ie0GRtXl5eaGlpkb0vUQ5aOETo7OzkcoMO/eAS4P4bFzlOij8oLi4OmZmZsvclyiFLyGFrayueeuopxMTEQKvVDt3ToWZdXV1wc3Pj0pt+cAlwfx+U4zLcBzk4ONBzOuycLCGHn332GSIjI5Gbm4uzZ8/i3/7t31R/uIXXuz2AfnAJ0NfXx/XKJn9/f9TV1XHrT/iSJeRQo9Ggvb0djDF0dHTA29sbTk5WuRKYG7nu3RjPjBkzbDIokghz9epVbm9cACAyMnLUG0RiP2QJOWxvb8eGDRtQUlKC9vZ2/PGPf8S6devG3J4aQg57enpQWlqK6OhoLv2B+9fuZ2VljRkUKUd/qudbn5mZafL/vdT9hcyg5O+fPdSLxT3k8Ntvv2WvvfYaMxqNrLS0lM2ZM4e1traa3bZSQw7Pnj3L+vr6uPUflJKSwrU/1fOp7+3tZefOnePWf1BBQQGrra3l1p/qpWXq96/oQ1VCQg7379+PTZs2QaPRIDQ0FCEhIaqOzlDKnbN0dZV9unbtGhISEniPgcjISBQWFvIeg3AgS8jh7NmzkZqaCgC4c+cOrl+/Luvd1tbU29sLFxcX3mMAoKur7FV3dzfc3d15jwGNRmPR8zmI7RB9hnp4yKHBYMD27duHQg6B+5lVv/jFL7Bt2zZER0eDMYYPPvgA06dPFz08DxkZGYp4twfQ1VX2yGg0crnpbzxTpkxBa2srvLy8eI9CZCRLyGFAQAD++te/WqMVdz09PYp4tzfIxcUFvb29kj8PhChDdna2JI+Hnai4uDicP38eK1eu5D0KkZFy3rqogBLf3cfHx49/5QOxOS0tLZg2bRrvMYY4OjrCaDTyHoPIjBYOCxQWFkKr1fIeYwQPDw90d3fzHoPYMScnJwwMDPAeg8iIFg4L1NfXY+bMmbzHIHbqzp078PPz4z3GKLGxscjOzuY9BpERLRwWUOoVJHPmzEFlZSXvMYjElPiJFwA8PT3peeR2RpaQww8//BB6vR56vR5RUVFwdHREU1OTNVrLpq2tTbHPSQ8NDUVZWRnvMYgMlPrmhdgXWUIO33jjDeTk5CAnJwfvvfceli9fDm9vb7GtZaW0q1mIfTEYDIq6DPdB3t7euHfvHu8xiExkCTkc7tChQ9iyZYvYtrIbGBhQdDCjq6srPZnNhuXm5kKv1/MeY1w6nQ55eXm8xyAykSXkcFBXVxcCAwNx8+bNcT9xKDXkUEionJT9zenr68P169dHBC/yDlmjeuvVZ2VlYeHChdz6C/HgjEr6/tljvVjcQw4HHT58mK1fv17wtpUScnjz5k1WXl7Orb9Qp06d4tqf6qWrT01N5dpfiNTUVGY0Grn1p3rr4h5yOOjw4cOqPExVWVmJkJAQ3mMQO3Xv3j1VnBPUarUUemgnZAk5BO4/PvbcuXN4+umnxbYk45g9ezZu3brFewxiZfn5+dDpdLzHMMvPzw8NDQ28xyAyEL1wDA8
|
|||
|
|
"text/plain": [
|
|||
|
|
"<Figure size 360x288 with 1 Axes>"
|
|||
|
|
]
|
|||
|
|
},
|
|||
|
|
"metadata": {},
|
|||
|
|
"output_type": "display_data"
|
|||
|
|
}
|
|||
|
|
],
|
|||
|
|
"source": [
|
|||
|
|
"import numpy as np\n",
|
|||
|
|
"import matplotlib\n",
|
|||
|
|
"\n",
|
|||
|
|
"# Agg 后端 = Anti-Grain Geometry 后端\n",
|
|||
|
|
"# 不需要弹窗口、只想“静默”出图(服务器、脚本、批量、CRON、Web 后台)就用 Agg\n",
|
|||
|
|
"#matplotlib.use(\"Agg\")\n",
|
|||
|
|
"import matplotlib.pyplot as plt\n",
|
|||
|
|
"\n",
|
|||
|
|
"# 新建图窗:宽 5 英寸、高 4 英寸,分辨率 72 dpi(Agg 后端,仅供保存)\n",
|
|||
|
|
"fig = plt.figure(figsize=(5, 4), dpi=72)\n",
|
|||
|
|
"\n",
|
|||
|
|
"# 添加几乎铺满整张图的坐标轴,边距仅 1 %\n",
|
|||
|
|
"axes = fig.add_axes((0.01, 0.01, 0.98, 0.98))\n",
|
|||
|
|
"\n",
|
|||
|
|
"# 生成 0→2 的 200 个等距点,作为横坐标\n",
|
|||
|
|
"x = np.linspace(0, 2, 200)\n",
|
|||
|
|
"# 计算 1 Hz 正弦波,y = sin(2πx)\n",
|
|||
|
|
"y = np.sin(2 * np.pi * x)\n",
|
|||
|
|
"\n",
|
|||
|
|
"# 绘制正弦曲线:黑色、线宽 0.25 pt\n",
|
|||
|
|
"plt.plot(x, y, lw=0.25, c=\"k\")\n",
|
|||
|
|
"\n",
|
|||
|
|
"# 设置坐标轴刻度密度:x 每 0.1 一格,y 每 0.1 一格\n",
|
|||
|
|
"plt.xticks(np.arange(0.0, 2.0, 0.1))\n",
|
|||
|
|
"plt.yticks(np.arange(-1.0, 1.0, 0.1))\n",
|
|||
|
|
"\n",
|
|||
|
|
"# 打开网格线,便于观察波形\n",
|
|||
|
|
"plt.grid()\n",
|
|||
|
|
"\n",
|
|||
|
|
"# 在非交互 Agg 下,plt.show() 不会弹窗;如要保存可改用 plt.savefig(\"sin.png\")\n",
|
|||
|
|
"plt.show()"
|
|||
|
|
]
|
|||
|
|
},
|
|||
|
|
{
|
|||
|
|
"cell_type": "code",
|
|||
|
|
"execution_count": null,
|
|||
|
|
"metadata": {},
|
|||
|
|
"outputs": [],
|
|||
|
|
"source": []
|
|||
|
|
}
|
|||
|
|
],
|
|||
|
|
"metadata": {
|
|||
|
|
"kernelspec": {
|
|||
|
|
"display_name": "Python 3 (ipykernel)",
|
|||
|
|
"language": "python",
|
|||
|
|
"name": "python3"
|
|||
|
|
},
|
|||
|
|
"language_info": {
|
|||
|
|
"codemirror_mode": {
|
|||
|
|
"name": "ipython",
|
|||
|
|
"version": 3
|
|||
|
|
},
|
|||
|
|
"file_extension": ".py",
|
|||
|
|
"mimetype": "text/x-python",
|
|||
|
|
"name": "python",
|
|||
|
|
"nbconvert_exporter": "python",
|
|||
|
|
"pygments_lexer": "ipython3",
|
|||
|
|
"version": "3.12.11"
|
|||
|
|
}
|
|||
|
|
},
|
|||
|
|
"nbformat": 4,
|
|||
|
|
"nbformat_minor": 4
|
|||
|
|
}
|