Files
jupyter-collection/scientific-computing-2/auto_examples_jupyter_2/plot_grid.ipynb

86 lines
11 KiB
Plaintext
Raw Normal View History

2025-10-21 11:20:44 +08:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# Grid\n",
"\n",
"Displaying a grid on the axes in matploblib.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAngAAAHgCAYAAAA2ShCJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGzNJREFUeJzt3UGq5Ob1N+BTlYI7kGg1eBZiB09rXoOAl+CdaBFxj7yC2omXEMggiwjEYyfdSr8UFwrpP7hf54M4jktS6yo6ep5ZX78/HUUcwi9qOfcwDMMQAACkcVz7BgAA+LwUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGROjx58fn6O5+fnf/257/v4+9//Hl988UUcDodFbg4AgP9vGIb45z//Gb/97W/jePzl93QPF7zvv/8+3r1791luDgCA6X788cf43e9+94v//PDob7L49zd4Hz58iK+++ir++te/xtu3b0fd1MePHyMioq7rUbk1s2vO3mJ2br7v+/jzn/8cf/jDH/7r/0L53HO3+rz2lp2bt1+yS+btl+yS+ffv38fXX38d79+/j6ZpfvHcw2/wnp6e4unp6Wc/f/v27eiCdzq9jJ3yH2yt7Jqzt5idm+/7Pqqqirdv347+L8g9Pq+9Zefm7Zfsknn7Jbt0PiJ+9fM4/5IFAEAyCh4AQDIKHgBAMgoeAEAyCh4AQDIKHgBAMgoeAEAyCh4AQDIKHgBAMgoeAEAyCh4AQDIP/y7aX1JK+dfvVHvU7XabPG+t7Jqzt5idmx+GISJe9uvXft/e55y71ee1t+zcvP2SXTJvv2SXzJdSHjo3+g3e9XqN8/kcl8tl9E0BALC80W/w2raNtm2j67pomiaqqoq6ricNn5pbM7vm7C1mp+b7vo+IiKqq4nic9iXBnp7XXrNT8/ZLdsm8/ZJdMn+/3x865xs8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkTnMvUEqJ02ncZW632+R5a2XXnL3F7Nz8MAwR8bJfh8Ph1eZu9XntLTs3b79kl8zbL9kl86WUh86NfoN3vV7jfD7H5XIZfVMAACxv9Bu8tm2jbdvoui6apomqqqKu60nDp+bWzK45e4vZqfm+7yMioqqqOB6nfUmwp+e11+zUvP2SXTJvv2SXzN/v94fO+QYPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgmdPcC5RS4nQad5nb7TZ53lrZNWdvMTs3PwxDRLzs1+FweLW5W31ee8vOzdsv2SXz9kt2yXwp5aFzo9/gXa/XOJ/PcblcRt8UAADLG/0Gr23baNs2uq6Lpmmiqqqo63rS8Km5NbNrzt5idmq+7/uIiKiqKo7HaV8S7Ol57TU7NW+/ZJfM2y/ZJfP3+/2hc77BAwBIRsEDAEhGwQMASEbBAwBIRsEDAEhGwQMASEbBAwBIRsEDAEhGwQMASEbBAwBIRsEDAEhGwQMASOY09wKllDidxl3mdrtNnrdWds3ZW8zOzQ/DEBEv+3U4HF5t7laf196yc/P2S3bJvP2SXTJfSnno3Og3eNfrNc7nc1wul9E3BQDA8ka/wWvbNtq2ja7rommaqKoq6rqeNHxqbs3smrO3mJ2a7/s+IiKqqorjcdqXBHt6XnvNTs3bL9kl8/ZLdsn8/X5/6Jxv8AAAklHwAACSUfAAAJJR8AAAklHwAACSUfAAAJJR8AAAklHwAACSUfAAAJJR8AAAklHwAACSUfAAAJI5zb1AKSVOp3GXud1uk+etlV1z9hazc/PDMETEy34dDodXm7vV57W37Ny8/ZJdMm+/ZJfMl1IeOjf6Dd71eo3z+RyXy2X0TQEAsLzRb/Dato22baPrumiaJqqqirquJw2fmlszu+bsLWan5vu+j4iIqqrieJz2JcGentdes1Pz9kt2ybz9kl0yf7/fHzrnGzwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkTnMvUEqJ02ncZW632+R5a2XXnL3F7Nz8MAwR8bJfh8Ph1eZu9XntLTs3b79kl8zbL9kl86WUh86NfoN3vV7jfD7H5XIZfVMAACxv9Bu8tm2jbdvoui6apomqqqKu60nDp+bWzK45e4vZqfm+7yMioqqqOB6nfUmwp+e11+zUvP2SXTJvv2SXzN/v94fO+QYPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACCZ09wLlFLidBp3mdvtNnneWtk1Z28xOzc/DENEvOzX4XB4tblbfV57y87N2y/ZJfP2S3bJfCnloXOj3+Bdr9c4n89xuVxG3xQAAMsb/Qavbdto2za6roumaaKqqqjretLwqbk1s2vO3mJ2ar7v+4iIqKoqjsdpXxLs6XntNTs1b79kl8zbL9kl8/f7/aFzvsEDAEhGwQMASEbBAwBIRsEDAEhGwQMASEbBAwBIRsEDAEhGwQMASEbBAwBIRsEDAEhGwQMASEbBAwBI5jT3AqWUOJ3GXeZ2u02et1Z2zdlbzM7ND8MQES/7dTgcXm3uVp/X3rJz8/ZLdsm8/ZJdMl9Keejc6Dd41+s1zudzXC6X0TcFAMDyRr/Ba9s22raNruuiaZqoqirqup40fGpuzeyas7eYnZrv+z4iIqqqiuNx2pcEe3pee81Ozdsv2SXz9kt2yfz9fn/onG/wAACSUfAAAJJR8AAAklHwAACSUfAAAJJR8AAAklHwAACSUfAAAJJR8AAAklHwAACSUfAAAJJR8AAAkjnNvUApJU6ncZe53W6T562VXXP2FrNz88MwRMTLfh0Oh1ebu9Xntbfs3Lz9kl0yb79kl8yXUh46N/oN3vV6jfP5HJfLZfRNAQCwvNFv8Nq2jbZto+u6aJomqqqKuq4nDZ+aWzO75uwtZqfm+76PiIiqquJ4nPYlwZ6e116zU/P2S3bJvP2SXTJ/v98fOucbPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGROjx58fn6O5+fnf/2567qIePmlyp9+sfKjPp0fm1szu+bsLWbXnL3F7Jqzt5hdc/YWs2vO3mJ2zdlbzK45e4vZzzX71xyGYRgeOfjdd9/Fu3fvfvbzH374IaqqGnd3AACMVkqJb7/9Nj58+BBv3rz5xXMPF7z/9Abvyy+/jJ9++inevn076uY+fvwYERF1XY/KrZldc/YWs3Pzfd/Hn/70p/jmm2/ieBz3JcEen9fesnPz9kt2ybz9kl0y//79+/jiiy9+teA9/Fe0T09P8fT09LOfH4/H0Qv86fzY3JrZNWdvMfs58p+y9kt2ifynrP2SXSL/KWu/ZJea/avnRl8ZAID/aQoeAEAyCh4AQDIKHgBAMgoeAEAyCh4AQDIKHgBAMgoeAEAyCh4AQDIKHgBAMgoeAEAyD/8u2l9SSonTadxlbrfb5HlrZdecvcXs3PwwDBHxsl+Hw+HV5m71ee0tOzdvv2SXzNsv2SXzpZSHzo1+g3e9XuN8Psflchl9UwAALG/0G7y2baNt2+i6Lpqmiaqqoq7rScOn5tbMrjl7i9mp+b7vIyKiqqo4Hqd9SbCn57XX7NS8/ZJdMm+/ZJfM3+/3h875Bg8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIBkFDwAgGQUPACAZBQ8AIJnT3AuUUuJ0GneZ2+02ed5a2TVnbzE7Nz8MQ0S87NfhcHi1uVt9XnvLzs3bL9kl8/ZLdsl8KeWhc6Pf4F2v1zifz3G5XEbfFAAAyxv9Bq9t22jbNrqui6ZpoqqqqOt60vCpuTWza87eYnZqvu/7iIioqiqOx2lfEuzpee01OzVvv2SXzNsv2SXz9/v9oXO+wQMASEb
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"from matplotlib import ticker\n",
"\n",
"ax = plt.axes((0.025, 0.025, 0.95, 0.95))\n",
"\n",
"ax.set_xlim(0, 4)\n",
"ax.set_ylim(0, 3)\n",
"ax.xaxis.set_major_locator(ticker.MultipleLocator(1.0))\n",
"ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.1))\n",
"ax.yaxis.set_major_locator(ticker.MultipleLocator(1.0))\n",
"ax.yaxis.set_minor_locator(ticker.MultipleLocator(0.1))\n",
"ax.grid(which=\"major\", axis=\"x\", linewidth=0.75, linestyle=\"-\", color=\"0.75\")\n",
"ax.grid(which=\"minor\", axis=\"x\", linewidth=0.25, linestyle=\"-\", color=\"0.75\")\n",
"ax.grid(which=\"major\", axis=\"y\", linewidth=0.75, linestyle=\"-\", color=\"0.75\")\n",
"ax.grid(which=\"minor\", axis=\"y\", linewidth=0.25, linestyle=\"-\", color=\"0.75\")\n",
"ax.set_xticklabels([])\n",
"ax.set_yticklabels([])\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}